
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

638

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org


Abstract: Ontology provide a structured way of describing

knowledge. Ontology's are usually repositories of concepts and
relations between them, so using them in information retrieval
seems to be a reasonable goal. The main objective in this report is
to provide efficient means to move from keyword-based to
concept-based information retrieval utilizing ontology's for
conceptual definitions [1]. In this paper, we present the skeleton
of such an IR system which works on a collection of domain
specific documents and exploits the use of a domain specific
ontology to improve the overall number of relevant documents
retrieved. In this system, a user enters a query from which the
meaningful concepts are extracted; using these concepts and
domain ontology, query expansion is performed. We propose a
system that matches the query terms in the ontology/schema graph
and exploits the surrounding knowledge to derive an enhanced
query. The enhanced query is given to the underlying basic
keyword search system LUCENE [2]. In this approach we try to
make use of more ontological Knowledge than IS-A and HAS-A
relationships and synonyms for information retrieval.

Keywords: Ontology, Semantic, DSA, IR System.

I. INTRODUCTION

Information retrieval (IR) is finding material (usually

documents) of an unstructured nature (usually text) that
satisfies an information need from within large collections
(usually stored as a document corpus). In the olden days,
information retrieval used to be an activity that only few
people were engaged like reference librarians, but over the
years, the volume of information available has increased
tremendously. Unfortunately, the unstructured nature and
huge volume of information has made it difficult for users to
sift through and find relevant information. Therefore, the role
of searching applications has become very crucial. Numerous
information retrieval techniques have been proposed to help
deal with this problem. Information retrieval systems based
on these commonly used keyword-based techniques are many

Manuscript received on May 25, 2020.
Revised Manuscript received on June 29, 2020.
Manuscript published on July 30, 2020.
* Correspondence Author

Dr. Karthik Pai B H*, Department of Information Science and
Engineering, NMAM Institute of Technology, Nitte, Karkala, India. E-mail:
Karthikpai@gmail.com

Balaji N, department, Department of Information Science and
Engineering, NMAM Institute of Technology, Nitte, Karkala, India. E-mail:
balaji.hiriyur@gmail.com

 © The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

a times difficult for ordinary or naive users as naive users
often have difficulty in expressing their information needs to
get back relevant results [3]. This problem arises because a
precise representation of user's information need in the terms
that system uses exactly is not possible to achieve. One more
reason for this problem is that search terms applied by the user
may be different form the keywords used by the system.
Therefore, our main objective is to overcome the drawbacks
of a traditional keyword based or full text search engine that
do not consider the underlying meaning or user's intent in
information retrieval systems. One such open source full text
search engine for information retrieval is LUCENE. We move
form keyword based search to semantic search or conceptual
search with the help of underlying domain specific ontology.
We present a detailed account of our approach in the
subsequent sections. In this section, the basics and overview
of any Information Retrieval System is presented.

A. Main Components of an IR System

Any Information Retrieval system is supported by the
Retrieval process which involves three basic processes, which
are as follows:
- The representation of the content of the documents,
- The representation of the user's information need, and
- The comparison of the two representations.
The processes are visualized as follows.

Figure – 1: An Information Retrieval System

Representing the documents is usually called the indexing
process. The process of representing the information need of a
user is often referred to as the
query formulation process.

An Ontology Based Information Retrieval
System

Karthik Pai B. H, Balaji N.

mailto:balaji.hiriyur@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.B3781.079220&domain=www.ijrte.org

An Ontology Based Information Retrieval System

639

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org

 The resulting representation is the query. The comparison of
the query against the document representations is called the
matching process. Retrieval strategy refers to information
retrieval model.
Retrieval strategies assign a measure of similarity between a
query and a document. Any Information Retrieval system is
based on Information Retrieval process.

II. LITERATURE SURVEY

In this section we present various information retrieval
strategies that have been studied for the purpose of this
project. We emphasize more on those models on which
LUCENE is built.

A. Information Retrieval Models

Every IR model transforms documents into an appropriate
representation which are used for retrieval of relevant
documents. The most important and state-of-the art models
for information retrieval are the Boolean model, the Statistical
model and the Linguistic and Knowledge-based models.

B. Boolean Model

The Boolean model is one the first models of information
retrieval model. It is a simple retrieval model based on set
theory and Boolean algebra. In this model, the queries are
specified as Boolean expressions which have precise
semantics. For example, the query term "finance" defines the
set of all documents that are indexed with the term finance. In
this model, the operators of George Boole's mathematical
logic - logical product AND, logical sum OR and logical
difference NOT - can be combined along with query terms
and sets of documents to form new document sets.

C. Extended Boolean Model

Retrieval using Boolean model is simple and elegant.
However Boolean model has no provision for term weighting.
So, no ranking of the answer set is possible. As a result the
size of the output set may be too large or too small which is
not desirable. Because of this problem, modern information
retrieval system are no longer based on Boolean model. Smart
Boolean approach and extended Boolean models (for
example: P-norm and Fuzzy Logic approaches) provide
relevance ranking to users.

D. Vector Space Models

Vector space model requires that retrieval objects are
modelled as elements in a vector space. In this model, terms,
documents, queries, concepts are all represented as vectors in
the vector space. Unlike the Boolean model, here we don't use
binary weights but assign non binary weights to index terms in
queries and documents. These terms are used to compute
degree of similarity between document and query. Here the
similarity measure used the cosine of the angle that separates
the two vectors x and y, where x represents the documents
index representation and y represents the query.

E. Probabilistic Models

Classic probabilistic models also known as binary
independence retrieval model, was introduced by Roberston
and Spark Jones. The probabilistic model attempts to capture
the IR problem within a probabilistic framework. It tries to
estimate the probability that a user finds a document dj

relevant [4]. It assumes that the probability of relevance
depends on the query and document representations only.

III. TOOLS REQUIRED

In this section we discuss about Data Structures and
Algorithms Ontology. We limit our discussion to domain
specific documents in this paper.

A. Data Structures and Algorithms Ontology

We use Data Structures and Algorithms Ontology by [5]. It
describes various data structures, their properties such as time
complexity, space complexity. It has a total of 88 concepts, 24
object properties, 12 data properties with an axiom count of
665 out of which 405 are logical axioms and 249 are
declaration axioms.

B. WordNet

WordNet is a huge lexical database for English. It was
originally created at Princeton University [6]. Words are the
units in WordNet, as the name indicates, though it contains
idiomatic phrases, compounds and phrasal verbs. The main
purpose of WordNet was to make huge amounts of lexical
knowledge available and also a well-defined structure that
could support linguistic research better than traditional
dictionaries. The foremost idea behind WordNet was to
organize lexical information in terms of meanings, rather than
word form. This facilitates in moving from traditional
dictionary to a lexical resource which incorporates semantic
relations between words. In WordNet nouns, adjectives,
adverbs are grouped into sets of synonyms called synsets. In
our paper we make use of WordNet to fetch synonyms of
query terms in order to match these concepts in ontology.

IV. PROPOSED SYSTEM ARCHITECTURE

In this section, we present a detailed account of each and
every module used in this system.

A. Text Extraction Module

We convert Information from various sources such as HTML
pages, pdf files etc., into textual format. This step is essential
because LUCENE indexes and searches only information that
is in textual format only. This constitutes our document
corpus. For the purpose of this project we have created a
document corpus which comprises information regarding
various data structures, their properties such as space
complexity, time complexity. Our document corpus includes
information about Array, 2D Arrays, LinkedLists, ArrayLists,
Graphs, Trees, and Heaps etc. Information about each of the
data structures have been gathered from various sources such
as Wikipedia, standard textbooks etc.

B. Analysis Module

Indexing text directly is computationally huge task so no
search application indexes text directly. In this step every
document is analyzed prior to indexing. Analysis is the
process of breaking down text into individual atomic elements
called tokens. A token can be viewed roughly as a word in the
language. The analysis step determines how the textual fields
in the documents are divided into tokens.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

640

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org

Here there are many challenges to be handled such as how are
compound words handled? Should synonyms also be
considered for original token stream so that a search for
"laptop" should also return documents mentioning notebook.
Though LUCENE provides a rich and wide variety of built in
analyzers, but often one size does not fit all requirements. One
of the most crucial steps in building any search application is
to choosing the right analyzer that satisfies all requirements.
For this purpose we have developed our own custom analyzer
that performs the following tasks.

- Removal of white spaces,
- Perform Stemming,
- Perform Parts of Speech Tagging,
- Extract Nouns as descriptors of concepts which are to

searched in Ontology, and
- Extract Prepositions and remove all stop words other

than prepositions which are not present in ontology.

Figure – 2: Steps in Analysis Phase

C. Indexing Module

After the analysis process, LUCENE stores the analyzed input
in data structure called inverted index that makes efficient use
of disk space and allows faster keyword look-ups. This data
structure is called inverted index because it uses tokens
extracted from input documents as keys for look up instead of
considering documents as keys for look up.
From a high level perspective a collection of segments form a
LUCENE index. A segment is nothing but a standalone index
which holds a collection of indexed documents. A new
segment is created whenever the writer flushes buffered added
documents and pending deletions into the directory. At search
time, each segment is visited separately and the results are
combined. Also the contents and path of each file document
are stored in the index file. For each token, meta-data such as
position of token within the document, how many documents
contain a token etc., are extracted and stored in the index file.

V. QUERY ANALYSIS

User enters query in natural language through search
interface. The query is passed through Analysis Module. This
module performs following tasks.

A. Spell Check

The query which the user inputs is first checked for spelling
mistakes as our document corpus does not contain such miss
spelt words. A Spell checker scans and extracts the words
contained in the text. Next it compares each word with a
known list of correctly spelled words from a dictionary.

B. White Space Removal

White spaces are removed from the query as they do not
contribute to distinguish any document.

C. Stemming

Many a times, user specifies a word in a query but only a
variant of this word is present in relevant document. Plurals,
gerund forms, past tense suffixes are examples of syntactic
variations of the same word. This will prevent a perfect match
between a query word and a document word. So to overcome
this problem, we substitute the words by their respective
stems or head words. A stem is a portion of the word which is
left after removal of affixes (suffixes and affixes).An example
of a stem is the word connect which is the stem for connected,
connecting, connection and connections. The process of
stemming improves performance of information retrieval as it
reduces variants of same root word to a common concept.
Another important benefit we get by stemming is that it
reduces the size of the index structure as the number of
distinct index terms is reduced.

D. Parts Of Speech Tagging

Each word in the user entered query is passed through a parts
of speech tagger. At the end of this process, a tag with its
syntactic nature (adjective, noun, pronoun, conjunction). We
extract nouns from query words and form a Descriptor List.
We choose nouns for forming the descriptor list as nouns
carry more semantic information than other parts of speech
and more importantly the concept names in the ontology are
predominantly nouns.

E. Remove stop words other than prepositions that are
present in Ontology

Words which occur very frequently among the documents in
the corpus are not good discriminators. In fact a word which
occurs in 80% of the documents is useless for retrieval
purposes. So, we eliminate stop words with the objective of
filtering out words with very low discrimination values. Such
words are referred to as stop words. Words such as is, are, the,
of, etc., are some common examples of stop words.
Elimination of stop words is very beneficial as it reduces the
size of the indexing structure reasonably. In our approach we
remove we remove all stop words but retain those
prepositions that are present in the domain Ontology.
Relationships in ontology's mostly contains prepositions such
as teaches in, is son of, etc. Removal of them may prevent an
exact match, so we retain prepositions that are present in
ontology in an attempt to improve efficiency of retrieval
system.

VI. KEY WORD QUERY AND QUERY EXPANSION

USING ONTOLOGY

In this stage the query is expanded semantically using
knowledge from the domain Ontology. The main objective
here is to discover new relationships between query terms
from the ontology. Query Expansion is the process of
aggregating query terms with additional terms. Each concept
in the descriptor list which is obtained in the Query Analysis
phase is compared with concepts in ontology and those
concepts for which there is a match are separated into another
list C. The figure – 3 describes query.

An Ontology Based Information Retrieval System

641

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org

Figure – 3: Query Expansion Module

Let K be the set of Keywords {k1, k2, … , km} that matched
with some concepts in Ontology which is denoted as C = {c1,
c2, … , cj}. Query Expansion reformulates the given query by
appending to it a set of keywords km+1, … , km+n that are
obtained from the set of Concepts C in Ontology. Basically in
this phase query terms are replaced by collection of some
additional terms and original terms. This enhanced query
terms are used to generate more relevant results.

A. Candidate Term Selection from Ontology

In this section, we define how a query term is expanded when
the query term itself or its synonym which is fetched from
WordNet is matched to a concept in ontology. Here we
consider distance from the original matched concept as an
important metric in determining which concept to select for
aggregation. The proposed algorithm traverses all IS-A and
HAS-A relationships by which we get sub concepts and super
concepts respectively.
In Algorithm, Wu & Palmer similarity measure [6] is used to
calculate similarity by considering the depths of the two
concepts (s1 and s2), along with the depth of the Least
Common Subsumer (LCS). The formula score is given as
follows.

It can be noted from the above equation that 0 <=score <= 1.
As the depth of the least common subsumer is never zero the
score is always < 0. As can be easily seen, if the input
concepts are the same, the wupalmer score is 1.
The Algorithm for candidate term selection is given below,
Input: C = {c1, c2, … , cj} the set of ontological concepts
matched with query terms or synonyms of query terms.
Term_Weight (tw), tw(ci) = 1.
Output: Q`= {k1, k2, … , km}

VII. ONTOLOGY BASED QUERY EXPANSION

ALGORITHM

Whenever a keyword query gets mapped to a concept in
Ontology, it is expanded as follows. When the keyword is not
present in Ontology, its synonyms are fetched from WordNet
and is checked whether it is present in ontology.

A. Case 1: (Concept)

Whenever the query term gets mapped to a concept in the
ontology, the query is expanded in terms of its properties, sub
classes and instances that are inferred from ontology. This
way of expansion guarantees semantically relevant
documents are retrieved even if the query term is not present
in the document. As we are expanding the query term in terms
of the knowledge inferred from ontology also ensures that the
documents are retrieved in the right context. For example a
query on graph term should also retrieve the documents which
speak of data structure with vertices and edges even in the
absence of the query term graph. In the above example the
expanded query now retrieves the documents which discusses
the properties of graph like edges, vertices, etc., or
sub-classes of graphs like Directed graph, un-directed graph,
or instances of graph like Simple graph, Multi-graph, Null
graph. If the query term gets mapped concept named Graph in
Ontology, it is expanded as follows.
QUERY Term: Graph
Expanded Query:
{(ADT and Edge and Graph_node and Graph_Operation) or
(Graph and (Applications or Graph_Operations)) or
(Acyclic Graph or
Cyclic Graph or
Directed Graph or
Un-directed Graph) or
(Simple Graph or
Null Graph or Multi-Graph)}

B. Case 2: (Property)

If the query term gets mapped to a property name in the
Ontology, we expand the query in terms of its domain and
range. For a query edge, the expanded query will be in the
form of (Graph .and. edge) .or. (Tree .and. edge) or. (edge.
and. directed) .or. (edge. and. un-directed) which ensures that
documents relevant to edge are
retrieved in the right context.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-9 Issue-2, July 2020

642

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org

Query Term: Edge
Expanded Query:
{(Graph and Edge) or
 (Tree and Edge) or
 (Head and Edge) or
 (Edge and Directed) or
 (Edge and Un-directed)}

C. Case 3: (Instance)

In the case where a query term gets mapped to a concept in the
ontology we include it directly in the aggregated list.
Whenever the query maps to two terms in the ontology,
relationship between them is identified and exploited
accordingly.

D. Case 4: (Concept, Concept)

Sibling-of, IS-A, and disjoint-with are the possible
relationships that can hold between two concepts. In this case
where the two query terms get mapped to a concept and
concept, it is expanded as follows. If the two given concepts
have a common ancestor, we exploit the specific properties
possessed by the common ancestor and expand the query in
terms of properties possessed by ancestor along with that of
their individual properties. For example in the tourism
domain the query Conference Room, Guest Room map to the
concepts Conference Room, Guest Room with the parent
concept Room. We retrieve documents that discuss these
concepts or their parent concept in the context of the common
properties such as Name, Internet-Access, Telephone, TV or
the specific properties of either of the query concepts. The
specific properties of the concept Guest Room are Minibar,
Terrace, Balcony, Bed... whereas Projector, Stage, Video
Conference system, Screen, are the specific properties of the
concept Conference Room. We leave out the documents that
do not contain none of the common or specific property terms.
When the given concepts do not have a common ancestor, the
query is expanded in terms of the intermediate concepts and
the connecting properties.
Query Terms: Conference Room, Guest Room
Expanded Query:
{(Room and (TV or Internet Access or Phone or Cleaning
Service)) or
(Conference Room and (Speakers or Projector or Stage)) or
(Guest Room and (Terrace or Balcony or Bed))}

E. Case 5: (Concept, Property)

A specific case of Property case where either the domain or
range is provided by the user. If the given concept is a domain
(range), the expanded query includes the range (domain) of
the property. The domain and range are further expanded in
terms of their inferred sub-classes and instances. For example
Q (Tree- Applications) bring out the results containing the
sets Tree .and. Applications .and. Router Algorithms and Tree
.and. Applications .and. Traversals. Then the query pull out
those containing the instances of the Queue along with the
property, Binary Tree .and. Applications, N-Ary Tree .and.
Applications.
Query Terms: Tree, Applications
Expanded Query: {(Tree and Applications and Router
Algorithms) or
(Tree and Applications and Traversal) or
(Binary Tree and Applications) or
(N-Ary Tree and Applications)}

F. Case 6: (Property, Property)

Given two property terms, we proceed with identifying the
concept(s) on which these given properties are defined (in the
place of domain or range). Whenever the given properties
identify a common concept the query is expanded in terms of
the common concept along with these properties. The query
term Cleaning Service, Video Conference System
corresponds to two properties defined on the concept
Conference Room in the tourism domain. Once the concept is
identified, we discuss these properties in the context of
Conference Room. So the enhanced search string is
Conference Room .or. (Cleaning Service .and. Video
Conference System).
{(Conference Room) or
(Cleaning Service and Video Conference System)}

G. Case 7: (Concept, Instance)

This can be viewed as a specific case of Concept-Concept
where we have one of the concepts referring to a specific
instance of a class. Just as in the mentioned case, the given
instance could be an instance of given class, or could be an
instance of a sibling of class C, where the siblings could be
either overlapping or disjoint.

H. Case 8: (Instance, Instance)

If each of the keywords is treated as an individual of a
concept, it would also be the one specific case of Case 4
where the relationships between the instances are taken into
consideration. Accordingly, the common properties, the
specific properties (properties of instances in general) and the
concept to which they belong (in case they belong to a
common concept) are brought into context. It is possible that
these two instances are related through a set of (object
property, value) pairs, in which case all the connecting (object
property, value) pairs are brought into context.

I. Case 9: (Property, Instance)

If the given property holds on the given instance then the
query is expanded in terms of the values of the property for
that individual. A query for priority-queue Applications,
basically looks for the values of the property Applications in
the context of priority queue, which in this case is Heap-
Construction. If the terms in the query are not related by any
of the relationships discussed above, the keyword based
search is performed which can be treated as default case.

J. Searching Module

In this module, index file created in the previous module is
used for searching the query. We use LUCENE's index
searcher class which searches the index files in the inverted
index table and renders results.

VIII. CONCLUSION AND FUTURE WORK

We proposed an architecture for information retrieval in a
specific domain. Our objective is to move from traditional
keyword based search to semantic search by using a domain
specific ontology as reference for concept definitions. An
algorithm for query expansion has been proposed which
aggregates the query terms by selecting concepts in ontology.

An Ontology Based Information Retrieval System

643

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication

Retrieval Number: B3781079220/2020©BEIESP
DOI:10.35940/ijrte.B3781.079220
Journal Website: www.ijrte.org

For this concept selection, various cases have been identified
and in each case query terms are expanded as mentioned in the
above sections. This algorithm uses more knowledge than
IS-A and HAS-A relationships and ontology and synonyms
for query expansion.

REFERENCES

1. A. Macfarlane J. Bhogal and P. Smith, A Review of Ontology based
Query Expansion, Information Process Management, Elsevier, 2007.

2. Lucene Search: http://lucene.apache.org
3. Rohit Rathore Priyamvada Singh Rashmi Chauhan, Rayan Goudar and

Sreenivasa Rao, Ontology based automatic query expansion for
semantic retrieval in sports domain. ICECCS, pages 422–433, 2012.

4. Norbert Fuhr. Probabilistic models in information retrieval, The
Computer Journal, 35, 1992.

5. Vinu E V and Rajeev. Data structures and algorithms ontology, AIDB,
Research Lab, IIT-M, 2015.

6. Wordnet wordnet 2.1 reference manual,
http://wordnet.princeton.edu/man/, Cognitive Science Laboratory,
Princeton University, 54, 2005.

7. Z. Wu and M. Palmet, Verb semantics and lexical selection,
Proceedings of the 32nd Annual meeting of the Association of
Computational Linguistics, pages 133-138, 1994.

AUTHORS PROFILE

Dr. Karthik Pai B H obtained Ph. D from
Visvesvaraya Technological University,
Belagavi, and Karnataka. His research area
includes Networks, software engineering, Cyber
Security. He is a life member of ISTE and
published one patent and various research papers
in Scopus indexed journals.

Mr. Balaji N has obtained M. Tech in Computer
Science and Engineering from IIT Madras,
Chennai. His research area includes theoretical
computer science, information retrieval systems in
domain specific ontology’s. He is a member of
IEEE, CSI, and ISTE. He published more than five
research articles in Scopus indexed journals.

http://lucene.apache.org/
http://wordnet.princeton.edu/man/

