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 
Abstract: A pendulum’s motion was stated to be as a way to 

illustrate the movement of human body in the studies of multibody 
system. Therefore, a comparison between the two numerical 
models in multibody systems were implemented on the articulated 
pendulums of different sizes. The two numerical models were 
known as the augmented Lagrangian formulation and fully 
recursive method. In order to identify the difference performance 
of the numerical models, various size of articulated pendulums 
has been tested which are 2, 4, 8, 16, 20 and 40 pendulums. 
Differential equations developed from both models were solved by 
using Runge-Kutta 4 and 5. Both models were coded in Matlab 
and have been optimized in order to ensure only related routine 
were considered. The performance was evaluated based on the 
computing time with constant relative and absolute tolerance in 
Runge-Kutta solver which is 0.01 s.  All pendulums were assumed 
to have the same weight, angle and length. As for the results, the 
augmented Lagrangian formulation solved the differential 
equations faster than the fully recursive method when tested up to 
20 pendulums. However, fully recursive method started to solve 
the differential equations faster than the augmented Lagrangian 
method when it need to deal with a very large system such as 40 
pendulums and above. Thus, it can be concluded that the suitable 
method to solve the small, open loop system such as articulated 
pendulums is augmented Lagrangian method while for a very 
large system, the fully recursive method will be more efficient.        
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I. INTRODUCTION 

A simple pendulum [1,2] usually will be swinging from its 
equilibrium position once been applied an external force. In 
multibody system, the pendulum can be implement to model 
for the motion of human body. Therefore, it is important to 
derive and solve the equations in order to track the motion as 
well as emphasizing on the initial condition’s dependency [3]. 
The human body can be represented by articulated pendulums 
linked together through joints. The mass, m of each bodies 
may be presumed to be equally distributed with length, l. The 
alignment of whole bodies system is derived by angle, θn 
between bodies and the vertical axes in which represents the 
generalized coordinates as shown in the Fig. 1. 

  
Fig. 1. Configuration of nth articulated pendulums 

In these case, the equations of motion for two multibody 
formulations known as the augmented Lagrangian [4],[5] and 
fully recursive [6]-[8] will be derived. However, the 
differential equations need to be defined before resolve for 
the equations of motion by applying the numerical time 
integration method. The equations of motion for the 
augmented Lagrangian formulation can be shown as 
independently redundant coordinates’ set [9]. Hence, it is 
important to define the relation between the coordinates by 
the kinematic of the constraint equations.  
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In contrary, the elimination of constraint forces can be done 
by the application of fully recursive formulation as it will be 
expressed in term of degrees of freedom (DOF) [10]. These 
degrees of freedom may include few variables as the joint 
coordinates to reduce number of equations and increased the 
complexity and non-linearity of the equations. 
 Generally, it is compulsory to determine the kinematics of 
the system before deriving the equations of motion. 
Therefore, as part of the kinematics’ definition, a global and 
topological method were applied to each of the formulations 
[11]. 

II.  MATHEMATICAL MODEL 

In the augmented Lagrangian, the equations of motion is 
developed on the basis of the principles of virtual work [12]. 
By assuming the system is unconstrained, the dynamic 
equilibrium usually described as: 

         (1) 
whereby  and are the inertial and external 
forces of virtual work respectively.  typically consists 
of mass matrix, M, generalized coordinates, , and vector of 
quadratic velocity, meanwhile consists of 
generalized force vector,  of the multibody system which 
then can be separately written as follows:  

                (2) 

                                 (3) 
By equalizing both equations (2) and (3), a new equation will 
form: 

         (4) 
However, the relations between the generalized coordinates 
and constraint equations need to be justify [13]. Hence, it is 
compulsory to satisfy the following equation: 

                 (5) 
It is then can simply be written as follows: 

                  (6) 

whereby  is the Jacobian matrix of the constraints and  is 
a set of Lagrange multipliers. Therefore, by considering 
equations (5) and (6), the equations of motion may be 
transform in matrix such as below: 
 

                     (7) 
Equation (7) is an algebraic equations’ system that can be 
used to solve the acceleration vector, . Full derivation for 
augmented Lagrangian formulation has been described 
structurally in [14] and [15].  
In recursive formulation, the algorithm basically need the 
application of forward and backward motion’s approach as 

shown in Fig. 2. 

  
Fig. 2. Backward and forward movement approach 

 

Any movement between the neighboring bodies and 
constraints by relative are significant to form matrices for the 
entire system and solve for their equations of motion. In 
simply, the derivation of the algorithm can be made as the 
following sequence:  

i. Determine the initial state of relative coordinate, q(t) and 
velocities, (t) at t0. 

ii. Compute system’s orientation and positions for i=1 to nB 
recursively. 

iii. Compute matrices of Cn, Sn and updated matrices of 
M*n-1 and Q*n-1 for every bodies in backward from 
body Bn to B1.  

iv. Subsequently, compute an acceleration state, Wn and 
joint acceleration,  by forward method from body 
B1 to Bn.  

From (iv), the integration of time can be used to determine 
the relative coordinates. By deriving the preceding adjacent 
body, Bn-1 in terms of position, rn-1 and velocity, vn-1, hence the 
position, rn and velocity, vn of the body, Bn also may be 
acquires. Full derivation of fully recursive formulation has 
been described comprehensively in [14], [15] and [16]. 

III. RESULTS AND DISCUSSIONS  

In this studies, various size of articulated pendulums has 
been chosen to study for the numerical analysis and 
mathematical modeling for the two mentioned formulations. 
The ode45 solver has been used as a part to solve for the 
numerical analysis [17]. Runge-Kutta method of 4 and 5 order 
was used to integrate time of the equations of motion by 
manipulating step size and fixed tolerance at 0.01 s [18]. The 
analysing process begin with recording the computational 
time at maximum solution time, tmax is 5 s for both 
formulations as in Table I. 

 
Table- I: Computing time of each step size for respective 
number of pendulums, N at maximum simulation time, 

tmax=5 s and tolerance setting at 0.01. 
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Fig. 3. Computing time for difference size of pendulums 

 
Generally, it is found that as the articulated pendulums 

became larger and longer, both formulations will consume 
more time to compute within the tightening of the step size. 
Pendulums with smaller tails such that number of pendulums, 
N are two, four, eight, sixteen and twenty shows slightly 
difference in computing time between the augmented 
Lagrangian and fully recursive methods. Also, for those 
smaller number of pendulums, it can be seen that the 
augmented Lagrangian solve the system faster than the fully 
recursive except at the step size 0.0001 s for N=20. However, 
as the articulated pendulums up to forty bodies, a significance 
result between these two formulisms can be seen as the 
differences between augmented Lagrangian and fully 
recursive show huge gaps in computing time. The time taken 
by fully recursive formulism are now computes faster than the 
augmented Lagrangian formulations. Eventhough by 
theoretically, the recursive should be more efficient to solve 
for the multibody system [16] yet from the results, it can be 
presumed that the fully recursive computes better than the 
augmented Lagrangian when dealing with large number of 

bodies and more complex system.  

IV. CONCLUSION 

A number of articulated pendulums such that 2, 4, 8, 16, 20 
and 40 are chosen in order to compare the efficiency of both 
formulations when dealing with smaller to larger matrices. In 
short, it is found that at a fixed tolerance of 0.01 s, the 
augmented Lagrangian formulations computes faster than the 
fully recursive method and both are showing insignificant 
difference in computing time at a smaller number of 
pendulums up until twenty bodies except at the step size 
0.0001 s for twenty articulated pendulums. However, as the 
pendulums reached forty articulations, the fully recursive 
method showed a significance results compared to augmented 
Lagrangian formulation as the differences in computing time 
are huge between both formulisms. Therefore, it can conclude 
that the augmented Lagrangian requires least time to solve for 
the system at smaller matrices meanwhile the fully recursive 
works better for large matrices and complex system. 
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