
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-8 Issue-6, March 2020

3233

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

 Abstract: Computerized Data from various sources, such as
remote sensors, cutting-edge sequencing of bioinformatics and
high-performance instruments, are increasing at extremely high
speeds. To keep analyzing through results for programming,
facilities and measurements, The Researches have to use new
procedures and techniques. Google's team started MapReduce
programming system which aims to manipulate huge data sets in
disseminated frameworks; this design lets software engineers
create applications that are extremely valuable to large data
processing. The motive of this paper is to explore MapReduce
research techniques and to increase current research efforts to
improve the execution of MapReduce and its capabilities.

 Keywords: Anonymization, Big data, Cloud Computing,
MapReduce, Programming Model, Scalability.

I. INTRODUCTION

During the last few years The researcher designed a new
procedure that helps us, developers and many others have
done hundreds of specific purpose calculations at Google that
process a large amount of big data such as crawled files,
web-request logs, and so on. For calculating different types of
defined data, e.g. updated tables, different portrayals of web
site diagram layout, rundowns of the quantity of pages
crawled per host. The Organizations are questioning mostly in
a given day, and so on. These computations are adroitly
guided for the most part. The knowledge information’s are

relatively huge in these computations, and the computations
have to be distributed cross-sectionally over hundreds or
thousands of machines to finish in a appropriate amount of
time. The program helps with the problems of how to balance
the process, how to spread the information and how to
highlight disappointments. As above mentioned complexity
The researcher has to organize another deliberation that helps
us to articulate the straight forwardness of the computations
they tries to talk to but hide the disorderly details of
parallelization, adaptation to non-critical failure, distribution
of information and adjustment of the burden in a library.

Manuscript received on February 10, 2020.
Revised Manuscript received on February 20, 2020.
Manuscript published on March 30, 2020.
* Correspondence Author

Ashutosh Dixit, Research Scholar, Bhagwant University, Ajmer,
Rajasthan

Nidhi Tyagi, Professor, MIET, Meerut

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The abstraction is designed with the help of Map and Reduces
primitives that are present in Lisp and in various other
languages. The Researcher discovers that over computations
a guide activity has been incorporated into each coherent
"record"

in our contribution to requesting the processing of a lot of
middle key / value pairs and then applying a reduce function
to all of the qualities that have a similar key to each other in
order to fit the inferred data. Suitably, the users can apply this
functional model particularly, they can use it for Map and
Reduce operations that will provide them to parallel large
computations in easier ways and use re-execution as the
primary mechanism for fault tolerance [1] The main motives
of this work are exceptionally basic and incredible interface
which gives automatic parallelization and transmission of
enormous computations of large scale; it can be easily
combined with the use of this interface that achieves high
performance on large cluster of commodity.

II. MAPREDUCE BACKGROUND

By Map Reduce Researcher can handle enormous
information volume requires data to be disseminated in
hundreds or thousands of Computers to complete processing
tasks in a very short time. Google's group created
MapReduce which operates automatically parallel. It
computations; MapReduce was designed to supervise data
partition and transfer between computing nodes. In addition,
it is very useful for handling and managing node failures.
MapReduce provides the very useful platform for the
programmers who are connected to big data processing and
in designing the software. Programmers have to focus on the
problematic situations and with the help of MapReduce they
control distributed computation problems, Apache Hadoop
is a good example of an open source of MapReduce outside
Google [2]. Due to its effective technology, programmers
and Reseacher use Hadoop in their research.
For two capacities, software engineers are limited: Map and
Reduce. Map work's input needs to be spoken to as a
key/value pair; for example, the guide research which
conducts a lot of document to sort word considerations takes
a document as a key and the document's content as a quality.
A lot of middle key / values are given by the guide function.
If a word count happens, the transition keys will be single
terms and the sum of activities of these words will be the
price. Reduce work's contribution is the yield of Map work
(the middle of the key/value
sets);

Mapreduce: Simplified Data Processing on
Clusters with Privacy Preserving By using

Anonymization Techniques

Ashutosh Dixit, Nidhi Tyagi

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.F7773.038620&domain=www.ijrte.org

Mapreduce: Simplified Data Processing on Clusters with Privacy Preserving By using Anonymization Techniques

3234

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

it forms these qualities and yields them in records; these
papers could be used for other MapReduce cycles.

MapReduce perfectly uses network bandwidth by transferring
computation to data. Google File System (GFS) manages the
data. GFS creates partition of input data into a set of Blocks;
the size of the block can be decided by the users. GFS works
for repetition of each block. By default, there are three
replication GFS sends one replica in the same rack and other
replica planning distribution is very useful for the
programmer to recover the data in the case of node or rack
failures. Here MapReduce collects data locality.
MapReduce works in cluster of nodes; one node works as a
master node and other nodes works as workers. As a worker it
is the responsibility of worker nodes. Worker nodes fulfill the
responsibilities to execute Map and Reduce tasks and master
node also fulfill the responsibilities to assign tasks for idle
workers. It is the duty of every Map worker to read the content
of it’s related to split and extracts key/ value pair and sends it
to the user for Map functions. The output of this processing is
buffered in memory and here it divided into a set of partitions
that are equal to number of reducers [31].
Master tells the through workers to read the map workers to
information from local disks. These connecting the
information or output to the reference are being stored in files.
Users can use these files for another MapReduce call, or use
them for a particular distributed application.

A. MapReduce Example

If the user’s needs to count the number of event for each word

which are collected of documents, the map function input is
the store of documents, every document represents a record.
In this procedure the input key is assigned as a document Id
for map function and value is string that presents content of
document. The Map function disseminates each file into a
sequence of words w1, w2, w3,…,wn. After this key value

create the list of pairs. In this procedure every words
represents the key and the user always found the value is 1. In
this example, the addition is associative and commutative

operation; so combiner function can be used to aggregate and
it is repeated words that can be occurred in the same
document [4].
When Map phase is finished, Shuffle & Sort phase starts. It
uses the intermediate data which is generated during Map
function, this function works for sorting the data with
intermediate data from different nodes, and create the
partition of the data into regions then processing is done for
reducing tasks. In the end, Reduce function has to use keys
and a list of values. For instance, shown word count example
that it is mentioned in Fig.1; it uses a fish as key and a list of
values {1, 2, and 1}. The last result can be collected into one
file that containing every word which is related to its
frequency [29].

B. Dealing with Failure

MapReduce is very capable function that can deal with
hundreds or thousands of commodity machines. Therefore, it
is able to tolerate machine failure. The failure may be appear
in master node and it may be in worker nodes. In the matter of
master failure all MapReduce function will not be worked,
and user can restart after assigning new master node.
The second thing, if user wants to find out worker failure, the
master checks all the workers time to time and it also checks
the worker status. In a suitable amount of time, if the worker
doesn't respond to master ping at this time, the masters
notice the failure of worker. In the case of map worker
failure, any map tasks either it is in progressive condition or
completed by the worker are reset back to its beginning
positions and it has to assign for another worker. During in
the case of failure in reduce task worker, after it needs to
transfer to an idle worker. The result of completed reduce
tasks is available in global file system, so it is not essential to
re-execute for this completed task. In the matter of, the map
tasks, the output is stored in local disks, so the user wants to
complete map tasks they have to re-execute in the failure
condition.

C. Dealing with Straggler

Straggler is used to a machine that completes map and
reduce task. The user can notice that this machine uses long
time for such types of task. There are lots of reasons of
straggler such as, a machine with bad disk. It usually takes

a long period for completion of its map or reduce task.
Due to several reasons, Stragglers appears such as, a
machine working with bad disk condition. MapReduce
follows general mechanism for reducing the problem of
straggler. When the MapReduce task that is near to
complete, here master has to work for backup execution.
When the primary or backup work execution is completed,
the task is showed as completed.

III. PROGRAMMING MODEL

The computation takes a lot of matches between data
key/value and creates a lot of key/value sets. The MapReduce
library application presents the estimate as two capabilities:
Map and Reduce.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-8 Issue-6, March 2020

3235

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

Guide, written by the user, takes a knowledge pair and
provides a lot of key/value sets in the middle of the road. The
MapReduce library bunches all intermediate key connected to
a common transfer key I and transfers them on to the job
Reduce.
The Reduce function, which is also written by the client,
identifies a transitional key I and many virtues for that key. It
combines these qualities in order to frame a possibly smaller
qualities arrangement. Only zero or one yield esteem is
generated by Reduce summons on a regular basis. Using an
iterator, the middle values are given to the reduced function of
the company. This allows us to deal with qualities
arrangements that are too big to even think about memory
fitting.

IV. IMPLEMENTATION

The user can do different types of implementations with the
help of MapReduce interface. It may be a suitable choice that
depends on the environment. For instance, one
implementation may be used for a small shared-memory
machine, another is useful for a large NUMA multi-processor,
and yet another is useful for an even larger collection of
networked computers.
This section represents an implementation there are targeted
to the distributed environment in most use at Google: Large
clusters of commodity PCs connected together with switched
Ethernet [6]. In our environment:
(1) Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.
(2) Equipment for the administration of commodity systems is
used–either 100 megabits/second or 1 gigabit/ second at
machine level on a regular basis, but with an impressive
reduction in transmission capacity by and large division.
(3) Machine failures are common activity because a cluster has
hundreds or thousands of machines.
(4) Inexpensive IDE provides storage; every machine is
directly connected with a disk. A distributed file system has to use
replication for providing availability and reliability on the top
basic unreliable hardware.
(5) Users submit to the booking system employments. Each
activity involves a lot of errands and is mapped to many
accessible machines within a group by the scheduler.

V. EXECUTION OVERVIEW

The Map summonses are distributed through different
machines by splitting the information data automatically into
many sections of M. Different computers may arrange the
flow of data in parallel. Lessen summons is distributed by
using a dividing power (e.g., hash (key) mod R) to divide the
transfer key storage into R bits. The number of allotments (R)
and the efficiency of the parceling are calculated by the
consumer.
 Figure 1 shows the overall progression in our execution of a
MapReduce activity. The accompanying succession of
activities occurs at the point when the client program calls the
MapReduce work (numbered names in Figure 1 correspond to
the numbers in the rundown below):

1. In the client program, the MapReduce library first
divides the data records into M bits of normally 16 megabytes

to 64 megabytes (MB) per piece (controllable by the client
using a discretionary parameter). It fires up multiple software
duplicates on a group of machines at that point.
2. One of the copies of the program is special i.e. the
master. The remaining is workers that are assigned work by
the master. Here M represents for map tasks and R represents
for reduce tasks that are assigned. The master catches idle
workers and assigns each one a map task or a reduce task.
3. The substance of the related input split is perceived by a
laborer who is doled out of a guide task. It parses key/value
matches from the knowledge data and sends each pair to the
Map function defined by the user. Cradled in memory is the
middle of the road key/value sets provided by the Map work.
4. Intermittently, the buffering pairs have to write to local
disk, partitioned into R regions by the partitioning function.
The locations of these buffered pairs on the local disk are sent
back to the master,
5. Who is responsible for forwarding these locations to the
reduce workers.
6. When a reduce worker focuses on these locations, that is
instructed by master, it uses here remote strategy for calls and
to read the buffered data from the local disks of the map
workers. When a reduce worker read all intermediate data,
then it sorts the data by the intermediate keys so that all the
occurrence of the same key are grouped together. The sorting
process is necessary for various keys map to the same reduce
task. If the amount of intermediate data is very large to save in
memory, an external sort is used [28].

7. The reduce worker iterates over the sorted intermediate
data and for each unique intermediate key en- countered, it
passes the key and the corresponding set of intermediate
values to the user’s Reduce function. The output of the Reduce
function is appended to a final output file for this reduces
partition.

8. When all map tasks and reduce tasks have been completed,
the master wakes up the user program. At this point, the
MapReduce call in the user pro- gram returns back to the user
code.

The output of the MapReduce execution was available in the
R output files once we successfully completed it (one per
reduced function, with file names as indicated by the user).

Mapreduce: Simplified Data Processing on Clusters with Privacy Preserving By using Anonymization Techniques

3236

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

Most of the time, users are not allowed to merge these R
output files into one file–users must transfer these files to
another MapReduce request as input, or use them from
another distributed program that is ready to handle multi-file
input[8].

Semantics in the Presence of Failures

When the client receives delineated decrease administrators
are in compliance with the elements of their assessments of
data, our distributed use is prepared to produce a similar yield
around that time. That's the whole program's non-blaming
sequential execution.
To obtain this property, we need to rely on guide nuclear
submissions and diminish task yields. In the private transitory
documents, each progress task is referenced in its yield. One
such record has been produced by a diminished task, and such
documents (one for each lessened task) need to be produced
by a guide task. The worker needs to make an impression on
the ace at the point when a guide task is finished and recalls
the names of the R brief documents for the message. If the ace
arrives to worry about the guide mission that has been done
before, it disregards the message. Else, the names of R
documents are put away in a data system of ace.
The lessen expert molecularly transfers the yield file to the
last yield documents at the stage when a declining mission
stops. In case the same diminish function is conducted on
different machines, a similar last yield record has to be done
in different ways. We rely on the nuclear rename activity
provided by the basic document framework to ensure that
only the data created by one execution of the lessen task is
contained in the last record framework state.
By far the bulk of our guidance and decrease managers are
deterministic, and the manner in which our semantics are
equivalent to successive executions for this situation makes it
easy for programmers to think about the actions of their
software. At a time when the guidance and additionally
decreasing managers become non-deterministic, we are
offering more unstable and critical semantics. In the hands of
non-deterministic executives, the yield of the particular
reduction function R1 is proportional to the yield of R1
produced by the successive application of the
non-deterministic program. In any case, the yield for an
alternative reduction task R2 can be compared with the yield
for R2 created by the non-deterministic program's alternate
consecutive execution [9].
Find map mission M and lower R1 and R2 undertakings. Let e
(Ri) be the execution of Ri that has been submitted (there is
actually one such execution). The flimsier semantics emerge
on the grounds that e(R1) may have perused the yield of one
execution of M and e(R2) may have perused the yield of
another execution of M.

VI. DATA PARTITION

The parcel of information is running on the internet. Here a
large number of data sets are included. The broad data needs
to be shared in small data sets. This gives the arbitrary number
for each data set after this. Partitioning is the way to find out
which reducer model is going to collect which transitional
keys and qualities. -mapper is trained and decides the reducer
can get them for the output (key, value) sets. It is essential that
they need to lessen together for a key, which is produced in
mapper case, created in two separated (key, value) sets. For

the reasons of the exhibition, it is also noteworthy that the
mappers should be free and capable of autonomously dividing
the data they should never have to trade data with each other
to decide the parcel for a specific key [10]. It is critical that the
target segment is the equivalent for any element, paying no
attention to which mapper event it was made. On the off
probability of having the primary feline in two separate (heart,
esteem) sets, all of them have to be diminished together. It is
also important for execution reasons that the mappers have
the option to freely parcel data that they should never have to
trade data with each other in order to decide on a specific key
for the segment.

ALGORITHM: DATA PARTITION MAP & REDUCE.

Input: Capturing Data (IDm, m), m € D, partition parameter n.
Output: Di, 1 ≤ i ≤ n.
Map: Generate a random number m and, where 1 ≤ rand ≤ n;

emit (m and, m).
Reduce: For every m and, emit (null, list(m)).
Once we partitioned data sets Di, 1 ≤ i ≤ n, are obtained, we

execute MRTDS (Di, kI ,AL0) on these data sets in parallel to
evaluate the center of the intermediate anonymization levels
AL*I ,1 ≤ i ≤ n.

MERGING

All medium rates of anonymization are translated into one at
the next step. The convergence of levels of anonymization is
completed by consolidating cuts. Cuta in AL’aandCutb in
AL’bbe two cuts of an attribute.
 There exist domain values qa€Cuta and qb€ Cutb that fullfill
one of the three parameters: qa is identical to qb, qa is more
general than qb, or qa is more specific than qb. To satisfies that
the merged intermediate anonymization level ALI never
violates privacy need, the more general one is selected as the
merged one, for instance, qa will be selected if qais more
general than or identical to qb. For this scenario of multiple
anonymization levels, it can be merged into the same process
for the each iteration. According to lemma provides that ALI
still compiles privacy requirements [11].

BIG DATA ANALYTICS SPECIALIZATION

The training in Large Data Analytics is extremely valuable to
understudies and will train the understudies to address
genuine issues In combination with each of these
measurements. For models, the storage of terabytes and even
petabytes of data in hundreds of data vaults supporting a huge
number of uses is not regular for advanced documents.
Maintaining such data vaults requires information in
dispersed frameworks of ultra-large scale, innovations in
virtualization, distributed computing, unstructured and
semi-organized data executives, enhancement strategies
dependent on data replication and data movement, as well as
cutting-edge data assurance systems. The exponential growth
of the amount of data calls for skill in state-of - the-art
dynamic data storage approaches combines scalable data
processing technologies and developments, manager data
streams, and large-scale system analysis, simulation, and
extraction [30].

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-8 Issue-6, March 2020

3237

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

To order to thoroughly investigate these volumes of data from
divergent and incompatible commands, data specialists
should use propelled data integration processes and business
intelligence infrastructure, publicly supporting advances,
large-scale software mixes, serious data processing and
semantic data management [12].

ALGORITHM: DATA SPECIALIZATION MAP &

REDUCE.

Input: Data record (IDm, m), n € D.; Anonymization

level AL*.
Output: Anonymous record (m*, count).
Map: Construct anonymous record m* = p1, (p2,….,pa,sv),
pi, 1 ≤ i ≤ a, is the parent of a specialization in current AL

and is also an ancestor of vi in m; emit (m*, count).
Reduce: For

ANONYMIZATION

Data anonymization can reduce concerns about protection
and security and pursue legitimate prerequisites.
Anonymization is not insusceptible countermeasures that
compromise Current anonymization schemes in discharged
databases will reveal promised data. It is sufficient for
anonymization after the approval of the individual data sets.
We may store or evacuate the touchy area in data sets through
anonymization. After that, for the small data sets, it gets the
middle of the road result and is used for the halfway results.
Data anonymization algorithm that converts clear text data
into a nonhuman readable and irreversible form including but
not limited to pre-image resistant hashes and encryption
techniques in which the decryption key has been discarded.

V. IMPLEMENTATION

We are suggesting a highly versatile two-stage TDS method
to cloud-based information anonymization. To use
MapReduce's parallel capacity on the internet, two-stage
specializations needed in an anonymization phase are
necessary. In the first phase, we need to parcel in a collection
of littler data sets, and each of these data sets is anonymized in
parallel, we get the middle of the results of the road. The
middle of the road results are collected into one in the
subsequent stage and further anonymized to achieve reliable
k-unknown data sets. Here MapReduce is helpful in the two
stages of stable computing. A collection of MapReduce
occupations is deliberately structured andco-operatively
composed to perform data sets specializations. Originally, we
imaginatively apply MapReduce to TDS on cloud for
information anonymization and purposefully design a series
of innovative MapReduce careers to accomplish the
specializations in a highly versatile manner. Secondly, we
propose a two-stage TDS approach to addressing increased
versatility by allowing for parallel execution of
specializations on numerous data parcels during the first
phase [16].
For example, Table 1 is to be anonymized with
Anonymization Level (AL) as set to 2 and QI={ AGE,
GENDER, PINCODE, PHONE} as set to Quasi Identifiers.
The group distinguishes the semi-identifiers as shown by its
standards and guidance.

Table 1: Anonymization level

The NAME characteristic here is "Touchy," so before
anonymizing the table above, we might want to "smother" this
property. After covering up, Table 2 looks as if it was below

Table 2: AL after suppression

Anonymizing data by means of Top-Down Specialization
would add that characteristic value to the base of Taxonomy
Tree in Table 3.

Table 3: Root of taxonomy tree

The data in the table above is highly protected, but the utility of
the data is extremely low. The information is very private. We
note here that data anonymization is not just the one goal we
are trying to achieve through anonymization. Therefore, we
make sure that the data value is high enough to make the
information useful for mining.
The Top-Down Specialization Algorithm must exercise the
trait esteems iteratively until the k Anonymization is infringed.
The table given in the wake of anonymizing it for k=2 in table 4
would look like

Table 4: Anonymized dataset

Mapreduce: Simplified Data Processing on Clusters with Privacy Preserving By using Anonymization Techniques

3238

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

VI. MAPREDUCE FUTURE RESEARCH
DIRECTIONS

Google is familiar with MapReduce's handling of
unstructured data, such as cloud records. There are research
needs that focus on MapReduce reconsideration to manage
organized data and stream data [27]. As stated in this analysis,
the work effect of MapReduce can be divided in two different
ways, the first approach is used to update the MapReduce
programming template. The second course of study is
concerned with modifying the current estimates in different
areas to be performed in MapReduce. Software engineers
who are limited to articulate the equation in outline reduction
works should be able to do this so that future research aims to
change the flow equations as information for MapReduce.
Then another work trend is building up a MapReduce layer
that eventually or semi-naturally transforms momentum
calculations to be ideal for MapReduce programming design.
Scientists can also explore new equations that are concerned
about the drawbacks of MapReduce

VII. CONCLUSION

Eventually, we can say we learned from this job and get
knowledge about different things. Initially, we worked out
how to restrict the programming template, how to make
concurrent computations and dispersions, and how to make
those computations more tolerant. In fact, coordinating
capacity for data transfer is a valuable commodity. Different
improvements in our framework are focused on reducing the
amount of data sent through the system: region advancement
allows us to discover data from nearby plates, spares arrange
transfer speed. Second, excess execution can be used to
reduce the effect of medium executed devices on stable
locations for lead disappointments and data handling.
MapReduce was developed by Google to take care of the
large volume of data. We're trying to present the MapReduce
programming method in this article. We present capabilities,
confines, and present research endeavors here, MapReduce.
This is the fundamental reason for improving MapReduce
power with its restrictions. We also outlined how MapReduce
execution can be upgraded by monitoring data slant. In
addition, for groups running MapReduce work, we discussed
current power enhancement solutions. We eventually spoke
about his future research in this research paper.
Due to the larger size of data sets, confidentiality protection of
data analysis, exchange and processing in the cloud
environment is difficult.

REFERENCES

1. H. Takabi, J.B.D. Joshi and G. Ahn (2010). “Security and Privacy

Callenges in Cloud Computing Environments,”IEEE Security and

Privacy, vol. 8, no. 6, pp. 24-31.
2. S. Chaudhuri (2012). “What Next?: A Half-Dozen Data Management

Research Goals for Big Data and the Cloud,” Proc. 31st Symp.

Principles of Database Systems (PODS ’12), pp. 1-4.
3. Shrivastva K.M.P., Rizvi M.A., Singh S. (2014). Big Data Privacy

Based on Differential Privacy a Hope for Big Data. 2014 International
Conference on Computational Intelligence and Communication
Networks 776–781. DOI: 10.1109/CICN.2014.167

4. N. Mohammed, B.C. Fung, and M. Debbabi (2011). “Anonymity

MeetsGame Theory: Secure Data Integration with Malicious
Participants,” VLDB J., Vol.20, No. 4, pp. 567-588.

5. L. Kaufman and P. Rousseeuw (1990). Finding Groups in Data An
Introduction to Cluster Analysis. New York: Wiley Interscience.

6. Roy, S.T.V. Setty, A. Kilzer, V. Shmatikov, and E. Witchel (2010).
“Airavat: Security and Privacy for Mapreduce,” Proc. Seventh
USENIX Conf. Networked Systems Design and Implementation
(NSDI ’10), pp. 297-312.

7. D. Zissis and D. Lekkas (2011). “Addressing Cloud Computing

Security Issues,” Fut. Gener. Comput. Syst., vol. 28, no.3, pp.

583-592.
8. J. Leverich and C. Kozyrakis (2010). "On the Energy (In) efficiency of

Hadoop Clusters," ACM SIGOPS Operating Systems Review, vol. 44,
no. 1, pp. 61-65.

9. L. Sweeney (2002). “K-Anonymity: A Model for Protecting Privacy,”

Int’lJ. Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10,
no. 5, pp. 557-570.

10. 10.Y. Kwon, M. Balazinska, B. Howe, and J. Rolia (2011). "A study of
skew in mapreduce applications," presented in the 5th Open Cirrus
Summit.

11. 11.J. Dittrich et. al. (2010). "Hadoop++: Making a Yellow Elephant
Run Like a Cheetah (Without It Even Noticing)," PVLDB, vol. 3, no.
1, pp. 518-529.

12. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-Ung (2003).
The Google file system. In 19th Symposium on Op- erating Systems
Principles, pages 29–43, Lake George, New York.

13. B.C.M. Fung, K. Wang, and P.S. Yu (2007). “Anonymizing

Classification Data for Privacy Preservation,” IEEE Trans. Knowledge

and Data Eng., vol. 19, no. 5, pp. 711-725.
14. E. Elnikety, T. Elsayed, and H. E. Ramadan (2011). "iHadoop:

Asynchronous Iterations for MapReduce," in Proc. the 2011 IEEE
Third International Conference on Cloud Computing Technology and
Science, pp. 81- 90.

15. Y. Zhang, Q. Gao, L. Gao, and C. Wang (2011). "iMapReduce: A
Distributed Computing Framework for Iterative Computation," in
Proc. the 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum, pp. 1112-1121.

16. Luiz A. Barroso, Jeffrey Dean, and Urs Ho¨lzle (2003). Web search for
a planet: The Google cluster architecture. IEEE Micro, 23(2): pp.
22–28.

17. J. Sedayao: Enhancing cloud security using data anonymization,
White Paper, Intel Coporation.

18. Top Ten Big Data Security and Privacy Challenges, Technical report,
Cloud Security Alliance, November 2012.

19. X. Zhang, L. T. Yang, C. Liu and J. Chen (2014). “A Scalable

Two-Phase Top-Down Specialization Approach for Data
Anonymization using MapReduce on Cloud”, IEEE Transactions on

Parallel and Distributed Systems (TPDS), ISSN: 1045-9219. (A*, IF:
1.796), vol. 25, no. 2, pp. 263-373.

20. X. Zhang, C. Liu, S. Nepal, S. Pandey and J. Chen (2012). “A

PrivacyLeakage Upper-Bound Constraint Based Approach for
Cost-Effective Privacy Preserving of Intermediate Data Sets in Cloud”,

IEEE Trans. Parallel and Distributed Systems, to be published.
21. Dean and S. Ghemawat (2010). “Mapreduce: A Flexible Data

Processing Tool,” Comm. ACM, vol. 53, no. 1, pp. 72-77.
22. T. Wang, S. Meng, B. Bamba, L. Liu, and C.Pu (2009). A general

proximity privacy principle, in Proc. IEEE 25th Int. Conf. Data Eng.
23. G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas, K. Kenthapadi, S.

Khuller, and A. Zhu, Achieving anonymity.
24. N. Mohammed, B. Fung, P.C.K. Hung, and C.K. Lee (2010).

“Centralized and Distributed Anonymization for High- Dimensional
Healthcare Data,” ACM Trans. Knowledge Discovery from Data, Vol.

4, no. 4, Article 18, 2010.
25. 25.M. Stonebraker et. al. (2010). “MapReduce and Parallel DBMSs:

Friends or Foes?" Communications of the ACM, vol. 53, no. 1, pp.
64-71.

26. 26.A. Abouzeid, K. Bajda Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin (2009). “Hadoop DB: An Architectural Hybrid of
MapReduce and DBMS Technologies for Analytical Workloads,"
PVLDB, vol. 2, no. 1, pp. 922-933.

27. Gupta, Palak and Tyagi, Nidhi, “Digital security implementation in big

data using Hadoop”, International Journal of Research Studies in

Computing, Volume 5 Number 1, 3-9, April, 2016.
28. Risha Tabassum, Dr. Nidhi Tyagi, “Hadoop Identity Authentication

using Public Private Key Concept”, International Journal of

Engineering Trends and Technology, Volume-45, Number-9 -March
2017.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878 (Online), Volume-8 Issue-6, March 2020

3239

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: F7773038620/2020©BEIESP
DOI:10.35940/ijrte.F7773.038620
Journal Website: www.ijrte.org

uthor-1
Photo

29. Vanisha Mavi, Nidhi Tyagi, “Hadoop’s Second Generation –YARN”,

International Journal of Contemporary Research in Engineering &
Technology, Volume7, Issue 1, and ISSN: 2250-0510, 2017.

30. Ramratan Rathore, P.S. Chowdhary, Nidhi Tyagi, “Verification of

Data Integrity using Public Auditability and Data Dynamics for
Storage Security in Cloud Computing”, International Journal of

Advance Research In Science And Engineering, 3(5):79-84, 2014.
31. Ashutosh Dixit, Nidhi Tyagi, “Big Data Privacy for End to End

Delivery”, International Journal of Recent Technology and
Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-2S8, August
2019.

AUTHORS PROFILE

Ashutosh Dixit, Research Scholar, from Bhagwant
University, Ajmer, Rajasthan, India. He has teaching
experience of 8 years, in reputed Engineering College.
His area of Interest includes Big Data, DBMS, Data
Structure, Cyber Security, & IOT.

Dr. Nidhi Tyagi, working as a Professor in
Department of IT at MIET, Meerut, U.P. India.. She
has teaching experience of 19 years, in reputed
Institutes and Universities. She has published 40
research papers in international and national journals.
Her area of interest includes Information Retrieval
System, Big Data, and Databases & IOT.

