
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

1272

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E4584018520/2020©BEIESP
DOI:10.35940/ijrte.E4584.018520
Journal Website: www.ijrte.org

Abstract— An algorithm is a clear specification of a

sequence of instructions which when followed, provides a solution
to a given problem. Writing an algorithm, depends upon various
parameters, which leads to strong algorithmic performance, in
terms of its computational efficiency and solution quality. This
research paper presents the different methodologies of writing
algorithms of data structure and also provides their performance
analysis with respect to time complexity and space complexity. As
we know that, for the same problem, we will have different
algorithms, written using different approaches. All approaches of
algorithms are important and have been an area of focus for a
long time but still the question remains the same “which to use

when?”, which is the main reason to perform this research. This

research provides a detailed study of how algorithms being written
using different approaches work and then compares them on the
basis of various parameters such as time complexity and space
complexity, to reach the conclusion.

Keywords: Algorithm, Performance Analysis, Time

Complexity, Space Complexity, Iteration, Recursion.

I. INTRODUCTION

In the field of Computer Science, algorithm plays a vital
role and it is said to be the core of every applications or
technologies that exists today. Algorithm is an unambiguous,
step – by – step procedure for solving a problem, which is
guaranteed to terminate after a finite number of steps [1]. We
can also say that an algorithm is a tool to solve computational
problems. Designing an algorithm involves various
techniques and methodologies. The speed of any algorithm
depends upon the number of operations it performs. Every
algorithm falls under certain class. From increasing order of
growth, they are classified as constant time algorithm,
logarithmic algorithm, linear time algorithm, polynomial time
algorithm and exponential time algorithm [2]. Each algorithm
falls under any of these following classes: Brute Force, Divide
and Conquer, Dynamic Programming, Greedy algorithm,
Backtracking algorithm, Transfer and Conquer, Decrease and
Conquer [2].

Manuscript published on January 30, 2020.
* Correspondence Author

Ms. Raji Ramakrishnan Nair*, Assistant Professor in P. G.
Department of Computer Applications, Marian College Kuttikkanam
(Autonomous), India

 © The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Based on the way of writing, each algorithm can be
classified into two areas: Iterative algorithm and Recursive
algorithm. A recursive algorithm calls itself which usually
passes the return value as a parameter to the algorithm again.
This parameter is the input while the return value is the output
[3]. Recursion usually divides the problem into smaller pieces
of the same nature. The output of one recursion is the input for
the next recursion. Examples of recursive algorithms are
generation of factorial, Fibonacci number series, merge sort,
quick sort, etc. An iterative algorithm is one which does not
call itself and may contain ‘for’ loop or ‘while’ loop. When

we focus on these two concepts, we find that any algorithm
could be written in an iterative way or recursive way. That
means, the algorithm which is written in an iterative way
could be written in recursive way and vice-versa. So, we can
say that power-wise both iterative and recursive algorithms
are same. When we have to analyze these algorithms, the
methods are different. To solve a given problem, P, different
algorithms could be written by different programmers. Based
on some parameters, we could analyze all those algorithms for
the same problem P. In this research paper, I would like to
focus on the performance analysis of any algorithm, which is
written either using an iterative approach or a recursive
approach.

II. COMPARATIVE STUDY ON ITERATIVE

ALGORITHM AND RECURSIVE ALGORITHM

Performance analysis of an iterative algorithm and a
recursive algorithm uses different approaches. The
performance analysis of any algorithm is based on two
parameters: Time Complexity and Space Complexity. Time
Complexity is defined as the total amount of time needed by
any algorithm, to complete its task. The time complexity of
any algorithm, P, depends on the number of times, a loop
structure in an iterative program get executed or a recursive
function being called, etc. The analysis of an iterative
algorithm, depends mainly on the part of the algorithm, where
loop structure is used, loops such as ‘for’ loop, ‘while’ loop,

etc. Taking some examples to explain how time complexity of
an iterative algorithm is been calculated. In the following
examples, I am not following any specific formats for writing
an algorithm. All algorithms are written in simple English, to
make it easy to understand.

(i) Consider the following algorithm written iteratively -

 A()

 {

Performance Anatomization of Computer
Algorithms Based on Iterative and Recursive

Methodologies
Raji Ramakrishnan Nair

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.E4584.018520&domain=www.ijrte.org

Performance Anatomization of Computer Algorithms Based on Iterative and Recursive Methodologies

1273

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E4584018520/2020©BEIESP
DOI:10.35940/ijrte.E4584.018520
Journal Website: www.ijrte.org

 int i, j;

 for (i: =1 to n)

 for (j: =1 to n)

 printf (“Sample”);

 }

In this algorithm, time complexity depends on the number of
times the printf statement get executed in the given nested
loop. For each value of ‘i’, ‘j’ loop executes for n number of

times. So, the total number of times, the printf statement gets
executed is n2 times. Hence, the time complexity for this
algorithm is O(n2).

(ii) Let us take another example written iteratively –

 A()

 {

 i = 1, S = 1;

 while (S < = n)

 {

 i = i + 1;

 S = S + i;

 printf (“Sample”);

 }

 }

This is an example where while loop is used. In the while
loop, the value of ‘i’ is incremented by one and the value of

‘S’ gets incremented by ‘i’ value. The total number of times
the printf statement gets executed depends upon the number
of times while loop condition becomes true.

S 1 3 6 10 15 21 …..

i 1 2 3 4 5 6 …..

From the above series we understood that as the value of ‘i’

gets incremented by 1, the value of ‘S’ is the sum of first ‘i’

natural numbers. The while loop condition becomes false only
when the value of S becomes greater than the value of n, i.e., S
> n. Suppose after k iterations, the value of S becomes greater
than n. Since S is the sum of first ‘i’ natural numbers, we can

write in the following way also –

 k (k + 1)/2 > n

(k2 + k)/2 > n

After continuing the derivation, we can conclude like this –

k > √n

Therefore, the time complexity of this algorithm is O (√n).

For analyzing a recursive algorithm, the method used for
calculating the time complexity is different from that used for
iterative algorithms. The reason is there is nothing to count
here in the recursive algorithm. Suppose we have the
following recursive algorithm –

A(n)

{

 if (n > 1)

 {

 return (A(n/2) + A(n/2))

 }

}

Let us assume T(n) as the time taken for algorithm A(n) then,

T(n) = c + 2T(n/2)

Where ‘c’ is the constant time needed for executing the ‘if’

statement and for invoking function A(n/2), the time taken
will be T(n/2).

There are various methods for calculating the time complexity
of recursive algorithms. Some of the methods used for the
calculation of time complexity are: Back substitution method,
Recursive tree method and Master theorem.

Suppose we have the following algorithm –

A(n)

{

 if (n > 1)

 {

 return (A (n – 1));

 }

}

Suppose time taken for executing the if statement is 1, then the
recurrence relation for the algorithm is written as –

T(n) = 1 + T(n-1) ----- equation (1).

Now solving the equation (1) using Back substitution method,
we get the following steps –

T (n) = 1 + T (n- 1)

 = 1 + 1 + T (n – 2)

 = 2 + T (n – 2)

 = 3 + T (n – 3)

 = 4 + T (n – 4)

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

1274

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E4584018520/2020©BEIESP
DOI:10.35940/ijrte.E4584.018520
Journal Website: www.ijrte.org

 .

 .

 .

 = k + T (n – k) ----- equation 2.

 .

 .

 .

This algorithm is going to stop when the value of n becomes
equal to 1. So, we can rewrite the recurrence relation as –

T(n) = 1 + T (n – 1); n >1

 = 1; n = 1

Now we have to determine at what point (n – k) becomes
equal to 1.

That means, n – k = 1

 k = n – 1

We can rewrite our equation 2 in the following way –

T (n) = k + T (n – k)

 = n – 1 + T (n – (n – 1))

 = n – 1 + T (1)

 = n – 1 + 1 (since T (1) = 1)

 = n

Therefore, we can also say that the time complexity of this
algorithm is O(n).

The space complexity of any algorithm is defined as the total
amount of memory spaces (program space and data space)
needed by that algorithm to complete its task. The space
complexity of any algorithm depends upon various
parameters, such as, memory space needed for variables,
referenced variables, pointers, recursion stack space, etc.

One of the important factors of performance analysis of any
algorithm is space complexity. It is calculated in different
ways for an iterative algorithm and for a recursive algorithm.
When considering an algorithm, the whole program can be
visualized into two sections: Fixed component and Variable
component.

Let us take one example to calculate the space complexity.

Consider the following iterative algorithm,

Algorithm array_add (a, n)

{

 Sum: = 0. 0;

 for i: = 1 to n do

 Sum: = Sum + a [i];

 return Sum;

}
Here some of the variables come under fixed component and
some comes under variable component part. Suppose one
word of memory is needed to store the value of a given
variable. In the above-mentioned example, we can see that we
have 4 variables, a, i, n and Sum. To store the values of n, i,
and Sum, a total of 3 words are needed and for holding the
values of array a, the total amount of memory space is
dependent upon the size of the given array. So, in this case,
the total amount of memory space needed for array a is n
words. Hence, we can say that the total amount of memory
space needed for the algorithm array_add is at least 3 + n
words.

Consider the following recursive algorithm,

Algorithm Rec_Sum(a, n)

{

if (n then return 0.0;

Else

return Rec_Sum(a, n-1) + a[n];

}

The invocation of the recursive function Rec_Sum depends
upon the value of n. If n > 0, then n number of times recursive
function will be called, otherwise the given algorithm will
return 0. Let us assume one word of memory space is needed
to store the return address. Each invocation of the function
requires 3 memory words, one memory word each for holding
the value of n, holding the return address and holding the
value for the pointer to a []. Here the height of the recursion
stack is n+1 (n for the n number of times recursive call occurs,
when n > 0 and 1 for the first invocation of the main algorithm
by the operating system).

So, in general, we can say that at least 3(n+1) memory words
are needed for any recursive algorithm.

Table - I: Performance Analysis

Type of Algorithm
Time

Complexity
Space

Complexity

Iterative Algorithm more less

 Recursive Algorithm less more

III. RELATED WORKS

All the sorting algorithms are usually falling under any
one of the following categories: Internal Sorting Algorithm
and External Sorting Algorithm. Researches have already
come up with the differences between these two categories.
All these sorting algorithms can be implemented by a
non-recursive program or a recursive program. When sorting
algorithms are analyzed for their empirical performance, it
has been found that performance of any algorithm changes as
the size of the data set varies.

Performance Anatomization of Computer Algorithms Based on Iterative and Recursive Methodologies

1275

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E4584018520/2020©BEIESP
DOI:10.35940/ijrte.E4584.018520
Journal Website: www.ijrte.org

Same algorithm shows average performance for a
particular data set and the same algorithm shows its worst
performance when provided with another data set.

It was a quest from centuries, to develop the most
efficient and the fastest algorithm to solve real world issues.
Today, the amount of data is too large and we require such an
efficient algorithm to solve the major problems that occur as
and when in the world [3].

Algorithm is defined as a group of unambiguous
instructions, which are arranged in some meaningful
sequence. There are lots of approaches available in algorithm,
any one of them can be used for solving a problem, depending
upon the present constraints of a problem. Out of the available
approaches, recursion is said to be an important problem
solving and programming technique.

Here, considering algorithms for Fibonacci series and
Factorial, implemented using both the available approaches:
Iterative and Recursive. While implementing these
algorithms, we can use any programming language. Since C is
one of the simplest programming languages, I am using C for
implementing Fibonacci series and Factorial.

Recursive functions may be divided into linear and branched
ones [4].

Consider the situation of calculating Fibonacci through the
recursive algorithm [4].

int fibo (n)
 if (n = = 0 || n = = 1)
 return n;
 else
 return fibo (n – 1) + fibo (n – 2);

Now, when the above algorithm executes for n = 5, then we
will have the following tree:

Fig. 1. Function Calls for fibo(5).

When we analyze the above tree, we get the following
information,

Sl. No. Function Name Total number of times function invoked
1. fibo (1) 4
2. fibo (2) 3
3. fibo (3) 2
4. fibo (4) 1
5. fibo (5) 1
6. fibo (0) 2

So, here we noticed that for a small input n = 5, fibo (1) is
calculated for 4 times, fibo (2) is calculated for 3 times, and so
on. This number of additions even grows for larger number, if
provided as input. Hence, we can say that duplication of
function is the main cause for the reduced performance of this
algorithm.

The iterative algorithm for Fibonacci series is considerably
faster since it doesn’t involve calculating the redundant things

[4].

Let us take an algorithm, Factorial, which is written to find the
factorial of a given number. As analyzed in [4], the iterative
approach of Factorial is written as:

Iterative factorial (int num)
sum <- 0
for 1 to num do
 sum <- sum + i;
return sum;
end;

And the recursive approach of factorial is written as,

Recursive factorial (int num)
if num <= 0
 return 1;
else
 return n * factorial (num – 1);
end;

After implementation of factorial using both approaches for
input size starting from 10 to 100000 [4], is shown below:

Table- II: Comparison of iterative and recursive
approaches for factorial algorithm.

N Recursive Iterative
10 334 ticks 11 ticks
100 846 ticks 23 ticks
1000 3368 ticks 110 ticks
10000 9990 ticks 975 ticks
100000 Stack Overflow 9767 ticks

As found in [4], the poor performance for the recursive
approach compared to an iterative approach is that, recursive
algorithm contains heavy push-pop of the registers in the
worst level of each function call.

IV. RESULTS

Recursion is good, elegant and powerful structure
compared to iteration. The good thing about recursion is the
way it simplifies the source code. For solving the same
problem, iteration and recursion have functional
equivalences, while they have different run – time behaviors.
In today’s world of data, all computational tasks are done

using any of the two basic mechanisms: Iteration and
Recursion [5]. As we know, Iteration is “repetition of a

specified set of computer instructions in sequence, for a
specified number of times` or until a condition is met” [6].

This mechanism of iteration is used when a situation demands
a set of actions to be performed
a certain number of times [7].

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

1276

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number: E4584018520/2020©BEIESP
DOI:10.35940/ijrte.E4584.018520
Journal Website: www.ijrte.org

to

This classical approach of iteration is included in today’s

programming language, using cycles or loops.
On the other hand, recursion is “an another programming

technique that mainly involves procedures, functions,
subroutines, or algorithms, that is supposed to call itself a
specified number of times or until a condition is met and the
process of calling itself follows the principle of stack, that is,
it follows the principle of Last-In-First- Out (LIFO)” [6].

V. CONCLUSION AND FUTURE SCOPE

In this paper, I tried to do performance analysis of
algorithms, written in an iterative way as well as in recursive
way. What I did is that I have taken some problems and
analyzed them, that means, calculated the time complexity
and space complexity for the problem, written in an iterative
way as well as in the recursive way. Here I would like to
conclude that the requirement of memory resources for both
iteration and recursion are different. Iteration needs less
memory resource but more processing resource, whereas
recursion needs more memory resource and less processing
resource. The solution to the question “which to use when?”

depends upon the problem we are trying to solve and the
programming language that we have chosen for solving it. I
would like to conclude also that a novice programmer always
prefers to use iterative mechanism than a recursive one.
Studies also shows that they start to prefer recursion over
iteration only when there are clear indications [8]. This is an
area where future scope of research exists tremendously.

REFERENCES

1. Pooja K. Chhatwani, Jayashree S. Somani, N. P. Hirani,“Comparative
Analysis & Performance of Different Sorting Algorithm in Data
Structure”, International Journal of Advanced Research in Computer
Science and Software Engineering, Vol.3, Issue.11, pp.500-507, 2013.

2. Raji Ramakrishnan Nair, Divya Joseph, Alen Joseph, “A Quick
Reference to Data Structures and Compueter Algorithms – an Insight
on the Beauty of Blockchain”, BPB Publications, India, pp. 5-15,
2019.

3. Ayush Pathak, Abhijeet Vajpayee, Deepak Agarwal, “A Comparative
Study of sorting Algorithm Based On their Time Complexity”,

International Journal of Engineering Sciences and Research
Technology, ISSN: 2277-9655.

4. Vatsal Shah, Jayna Dovya, “Study of Recursive and Iterative
Approach on Factorial and Fibonacci Algorithm”, International

Journal of Advance Engineering and Research Development
(IJAERD), Volume 1 Issue 1, Febraury 2014, ISSN: 2348-4470.

5. Gabbrielli, M.S. Martini Programming Languages: Principles and
Paradigms. Spinger Science and Business Media, 2010.

6. Kamthane, A. Programming and Data Structures. Pearson Education,
India, 2003.

7. Meriam-Webstar Dictionary.

http://www.merriam-webster.com.

8. Vladimir Sulow, “Iteration vs Recursion in Introduction to Programming
Classes: An Empirical Study”, Cybernetics and Information

Technologies, Volume 16, No. 4, Print ISSN: 1311-9702; Online
ISSN: 1314-4081.

AUTHORS PROFILE

Ms. Raji Ramakrishnan Nair pursued Bachelor of
Computer Applications from Mahatma Gandhi
University, Kottayam, India, in 2000 and Master of
Computer Applications from Mahatma Gandhi
University, Kottayam, India, in year 2004. She is
currently pursuing Ph.D. from Lovely Professional

University and also working as Assistant Professor in P. G. Department of
Computer Applications, Marian College Kuttikkanam (Autonomous), India

since 2007. She has published a book with BPB Publications, India. Her
research work focuses on Algorithms, Data Structures, and Blockchain. She
has 15 years of teaching experience.

http://www.merriam-webster.com/

