
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

5274

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication


Abstract—Always technical designers choice includes

algorithms, flowcharts, programming etc and the end users
requires given input and application output. Based upon this view
this paper focus on the advancement of Inverse Fast Fourier
Transform(IFFT) by doing design and observing the performance
analysis of 64 point IFFT, using Radix-8 algorithm. The
algorithm is developed by Inverse Decimation In
Frequency(IDIF) of IFFT, using Verilog as design entity and
synthesis are performed in Xilinx. In this architecture the
numbers of stages are reduced to 75%.

Index Terms-IFFT, IDIF, Verilog, XILINX

I. INTRODUCTION

A Inverse Fast Fourier transform (IFFT) is an efficient
algorithm to compute the Inverse discrete Fourier
transform (IDFT) and its inverse. There are many
distinct IFFT algorithms involving a wide range of
mathematics, from simple complex number arithmetic to
group theory and number theory.

A IDFT decomposes a sequence of values into
components of different frequencies. This operation is useful
in many fields (see discrete Fourier transform for properties
and applications of the transform) but computing it directly
from the definition is often too slow to be practical.
An IFFT is a way to compute the same result more quickly:
computing a IDFT of N points in the naive way, using the
definition, takes N(N-1), N2 arithmetical operations, while
an IFFT can compute the same result in only Nlog8N ,
N/2log8N operations. The difference in speed can be
substantial, especially for long data sets where N may be in
the thousands or millions—in practice, the computation time
can be reduced by several orders of magnitude in such cases,
and the improvement is roughly proportional to N / log(N).

Manuscript published on January 30, 2020.
* Correspondence Author

B. Anil Kumar*, Assistant Professor,Dept of ECE,Malla Reddy
Institute Of Engineering And Technology,Hyd.,TS, India.(Email:
banilkmr301@gmail.com)

M.Naveen Reddy, B.Tech Student, Dept of ECE, Malla Reddy Institute
Of Engineering And Technology, Hyd., TS, India (Email:
maddirala.naveenreddy22@gmail.com)

VamshiKollipara, Assistant Professor,Dept of ECE,Malla Reddy
Institute Of Engineering And Technology,Hyd.,TS, India..(Email:
vamshiversatile@gmail.com)

B.Rajesh, Student, B.Tech Student, Dept of ECE, Malla Reddy Institute
Of Engineering And Technology, Hyd., TS,India (Email:
rajesh14111998@gmail.com)

 © The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

This huge improvement made many IDFT based algorithms
practical; IFFTs are of great importance to a wide variety of
applications, from digital signal processing and solving
partial differential equations to algorithms for quick
multiplication of large integers.

The most well known IFFT algorithms depend upon the
factorization of N, but there are IFFTs with O(N log N)
complexity for all N, even for prime N.
Many IFFT algorithms only depend on the fact that

e¯ 2∏ j /N is anth primitive root of unity, and thus can be
applied to analogous transforms over any finite field, such as
number theoretic transforms. Since the inverse IDFT is the
same as the IDFT, but with the

opposite sign in the exponent and a 1/N factor,
any IFFT algorithm can easily be adapted for it.

II. LITERATURE SURVEY

J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex Fourier series.

Mathematics of Computation, 1965. A fast algorithm for
computing the Discrete Fourier Transform . (Re)discovered
by Cooley &Tukey in 19651 and widely adopted there after
has a long and fascinating history.Explained the design of
pipelined structure from Radix-8 IFFT with IDIF algorithm
using efficient butterfly structure. The different and dedicated
structures for the 64 bit-width pipelined radix-8 IDIF
butterfly structure are implemented. The main goal of this
paper is to minimize the number of real multipliers of the
architectures. This is done by varying the structure of the
complex multipliers and applying them into the butterflies.
These structures are widely used in fast and low power
multiplier architectures. In pipelined Radix-8 IFFT
structures have been developed with the help of Feed forward
structures. Feed forward structure provides 16ns for
performing 8-point IFFT.

III. EQUATIONS

The main reason for going with Inverse Fast Fourier
transform is to reduce the complexity and make mathematical
calculations easier compared to that of IDFT.The formulae
what we use in IDFT fails for higher complex stages where
the calculations become unperformable, So here in IFFT we
go for higher complex stages with reduced number of
calculations and complexity. The main difference between
the calculations performed in IDFT and IFFT is logarithm.

In this paper we are trying to implement the IFFT using
DIF with log base 8i.e.,Radix 8 structure implementing 64
bits of data.

Implementation of 64-Bits Radix - 8 IFFT for
Computation Speed by IDIF using Verilog

B. Anil Kumar, M. Naveen Reddy, Vamshi Kollipara, B. Rajesh

https://www.openaccess.nl/en/open-publications
mailto:rajesh14111998@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.E3209.018520&domain=www.ijrte.org

Implementation of 64-Bits Radix - 8 IFFT For Computation Speed by IDIF using Verilog

5275

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

General Equations
M-1
X(K)=∑x(n)WN------------------ (1)
N=0
 N/2-1 N-1
X(K)=∑x(n)Wnkn+∑x(n)Wnkn -----(2)
n=0 n=N/2

IV.BLOCK DIAGRAM

Figure 2 Butterfly Structure of RADIX-8

In the radix 8 IFFT first we align the data and it is given to

the input buffer which controls the data and performs the
distribution property which allows data to perform their
operations in a sequence .The next block refers to the
processing element i.e.,Radix 8 Butterfly structure ,Where
the number of stages reduced to 75%.The next and main
block of the structure is control signal which performs data
control and processing control.The next block COEF ROM
allows the processing element t perform the calculations and
store the result temporarily for future years.

DESCRIPTION
Compare to that of radix 2 and radix 4 here in this paper we

perform radix 8 operations by using the twiddle factors. The
radix 8 butterfly structure helps us to carry out the complex
calculations in the easier way.

In the butterfly structure of Radix 8 point IFFT we have 2
stages.The number of stages are obtained by reducing the
complexity using the IFFT.The number of stages are obtained
as follows below.

CALCULATIONS
To find the number of stages mathematically the equation

is
 n=logN8
N= number of samples
 n= number of stages
 n=log864
n=2log88
so,number of stages(n)=2.

S.no Number of complex

additions
Number of complex
multiplication

N=64
IDFT
N(N-1)=64(64-1)
=4032

IDFT
N2=64*64=4096

N=64
IFFT
Nlog8N=64log864
=128

IFFT
N/2log8N=64/2log864
=64

N=128 IDFT IDFT

N(N-1)=128(128-1)
=16,256

N2=128*128=16384

N=128
IFFT
Nlog8N=128log8128
=298.66

IFFT
N/2log8N=128/2log8128
=149.33

From the above table we can conclude that ,InIDFT for the

higher stages the complexity increases where in IFFT the
complexity is reduced .

V.PROCESS OF DECIMATION

First step of decimation is splitting a sequence in a smaller
sequences.A sequence of 64 Bit can be splitted in 8 sequences
of 4 blocks.Here on the first stage carries out the butterfly
operation by applying the twiddle factor.

In the second stage the output from the 64 Bit IFFT is split
into sequence of 8 equal parts.and the initial 32Bits are
performed by addition and twiddle factor multiplication and
then followed 32 Bits perform subtraction and multiplied
with twiddle factor.

Twiddle factors :

 =
For 64 points,the Twiddle factor is represented as,
N=64,

 = =1

 = =0.7-0.7j

 = =-j

 = =-0.7-0.7j

 = =-1

 = =-0.7+0.7j

 = = j

 = =0.7+0.7j

 = = 1

 = = 0.7-0.7j

 = =-j

 = =-1

 = =j

 = =0.7+0.7j

 = =1

 = =-j

 = =-1

 = =-0.7+0.7j

 = =1

 = =0.7-0.7j

 = =-1

 = =j

 = =-0.7-0.7j

 = =-1

 = =-j

 = =0.7-0.7j

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

5276

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Inputs at stage1:-
112,48,80,26,30,34,62,126,120,-5.656+64.707j,88j,-16.968+1.414j
,-22,-60.802-1.414j,-54j,83.426-1.414j,116,52j,-84,-20j,26,90j-58,
-122j,124,-42.42+1.414j,-92j,19.796+1.414j,-18,57.974-1.414j,50j
,-80.598-1.414j,97.592-0.707j,58j,8j,41.032-0.707j,-98,-88.076+0.
707j,-24+68j,40.076-48.076j,-124,66+56j,-54.662-0.707j,42j,86.6
62-0.707j,40,60j,76.968+0.707j,40+60j,76.968+0.707j,-52j,-99.59
2+39.592j,21.408-0.707j,-69j,-44.032-0.707j,-40+61j,5.248+0.707
j,-88j,-37.248+0.707j,-64+56j,14,57.49-0.707j,-24-70j,-105.49-0.7
07j,-16

 OUTPUTS AT STAGE 1:
56,56,56,56,-40,24,-8,56,64,64,64,64,-40,24,-8,56,60,60,6

0,60,-40,24,-8,56,68,68,68,68,-40,24,-8,56,58,58,58,58,-40,

24,-8,56,66,66,66,66,-40,24,-8,56,62,62,62,62,-40,24,-8,56,

70,70,70,70,-40,24,-8,56

 INPUTS AT STAGE 2:
56,56,56,56,-40,24,-8,56,64,64,64,64,-40,24,-8,56,60,60,6

0,60,-40,24,-8,56,68,68,68,68,-40,24,-8,56,58,58,58,58,-40,

24,-8,56,66,66,66,66,-40,24,-8,56,62,62,62,62,-40,24,-8,56,

70,70,70,70,-40,24,-8,56

OUTPUTS AT STAGE 2:
x(n)=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,

40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,5

9,60,61,62,63

Bit Reversal process of 64 bit samples
Normal Data Bit reversal Data

x(0)=000000 - x(0)=000000
x(1)=000001 - x(32)=100000
x(2)=000010 - x(16)=010000

x(3)=000011 - x(48)=110000
x(4)=000100 - x(8)=001000
x(5)=000101 - x(40)=101000

x(6)=000110 - x(24)=011000
x(7)=000111 - x(56)=111000
x(8)=001000 - x(4)=000100

x(9)=001001 - x(36)=100100
x(10)=001010 - x(20)=010100
x(11)=001011 - x(52)=110100

x(12)=001100 - x(12)=001100
x(13)=001101 - x(44)=101100
x(14)=001110 - x(28)=011100

x(15)=001111 - x(60)=111100
x(16)=010000 - x(2)=000010
x(17)=010001 - x(34)=100010

x(18)=010010 - x(18)=010010
x(19)=010011 - x(50)=110010
x(20)=010100 - x(10)=001010

x(21)=010101 - x(42)=101010
x(22)=010110 - x(26)=011010

x(23)=010111 - x(58)=111010

x(24)=011000 - x(6)=000110
x(25)=011001 - x(38)=100110
x(26)=011010 - x(22)=010110

x(27)=011011 - x(54)=110110
x(28)=011100 - x(14)=001110
x(29)=011101 - x(46)=101110

x(30)=011110 - x(30)=011110
x(31)=011111 - x(62)=111110
x(32)=100000 - x(1)=000001

x(33)=100001 - x(33)=100001
x(34)=100010 - x(17)=010001
x(35)=100011 - x(49)=110001

x(36)=100100 - x(9)=001001
x(37)=100101 - x(41)=101001
x(38)=100110 - x(25)=011001

x(39)=100111 - x(57)=111001
x(40)=101000 - x(5)=000101
x(41)=101001 - x(37)=100101

x(42)=101010 - x(21)=010101
x(43)=101011 - x(53)=110101

x(44)=101100 - x(13)=001101
x(45)=101101 - x(45)=101101
x(46)=101110 - x(29)=011101

x(47)=101111 - x(61)=111101
x(48)=110000 - x(3)=000011
x(49)=110001 - x(35)=100011

x(50)=110010 - x(19)=010011
x(51)=110011 - x(51)=110011
x(52)=110100 - x(11)=001011

x(53)=110101 - x(43)=101011
x(54)=110110 - x(27)=011011
x(55)=110111 - x(59)=111011

x(56)=111000 - x(7)=000111
x(57)=111001 - x(39)=100111
x(58)=111010 - x(23)=010111

x(59)=111011 - x(55)=110111
x(60)=111100 - x(15)=001111
x(61)=111101 - x(47)=101111

x(62)=111110 - x(31)=011111

x(63)=111111 - x(63)=111111

Discrete Fourier Transform, or simply referred to as DFT,

is the algorithm that transforms the time domain signals to the
frequency domain components. DFT, as the name suggests, is
truly discrete; discrete time domain data sets are transformed
into discrete frequency representation. In simple terms, it
establishes a relationship between the time domain
representation and the frequency domain representation. Fast
Fourier Transform, or IFFT, is a computational algorithm
that reduces the computing time and complexity of large
transforms. IFFT is just an algorithm used for fast
computation of the IDFT.

Applications of IFFT and IDFT

IDFT can be used in many digital processing systems
across a variety of applications such as calculating a signal’s

frequency spectrum, solving partial differential applications,
detection of targets from radar
echoes, correlation analysis,

https://www.openaccess.nl/en/open-publications

Implementation of 64-Bits Radix - 8 IFFT For Computation Speed by IDIF using Verilog

5277

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

computing polynomial multiplication, spectral analysis,
and more. IFFT has been widely used for acoustic
measurements in churches and concert halls. Other
applications of IFFT include spectral analysis in analog video
measurements, large integer and polynomial multiplication,
filtering algorithms, computing isotopic distributions,
calculating Fourier series coefficients, calculating
convolutions, generating low frequency noise, dense
structured matrices, image processing, and more.

Summary of IFFT Vs. IDFT

The Discrete Fourier Transform plays a key role in physics as
it can be used as a mathematical tool to describe the
relationship between the time domain and frequency domain
representation of discrete signals. However, to reduce the
computing time and complexity of large transforms, a more
complex but less time-consuming algorithm such as the Fast
Fourier Transform can be used. IFFT is an implementation of
the IDFT used for used for fast computation of the IDFT. In
short, IFFT can do everything a IDFT does, but more
efficiently and much faster than a IDFT. It’s an efficient way

of computing the IDFT.Compare to that of radix 2 and radix 4
here in this paper we perform radix 8 operations by using the
twiddle factors. The radix 8 butterfly structure helps us to
carry out the complex calculations in the easier way. In the
butterfly structure of Radix 8-point IFFT we have 2 stages.
The number of stages are obtained by reducing the
complexity using the IFFT. The number of stages are
obtained as follows below.

Block Diagram:

Block Diagram:

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-5, January 2020

5278

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

VI. SOFTWARE SIMULATION AND RESULTS

The proposed IFFT block of signal length 64 is been
simulated and synthesized using the Xilinx Design

Suite16.1. The RTL block thus obtained for the decimation
intime domain radix -8Inverse Fast Fourier transform
algorithm isshownThe RTL view of the butterfly structure
obtained after thesimulation of the 64-point IFFT block,
Decimation in timedomain is shown next and also the internal
architectureofthe butterfly block is shown.

RTL Schematic:-

https://www.openaccess.nl/en/open-publications

Implementation of 64-Bits Radix - 8 IFFT For Computation Speed by IDIF using Verilog

5279

Retrieval Number: E3209018520/2020©BEIESP
DOI:10.35940/ijrte.E3209.018520
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

VII. CONCLUSION

This project describes the efficient use of VLSI
for the implementation of radix 8 based
IFFT architecture and the wave form result of the various

stages has been obtained successfully. Compared to previous
method the accuracy in obtained results has been increased
with the help of efficient coding in VERILOG. The accuracy
in results depends upon the equations obtained from the
butterfly diagram and then on the correct drawing of
scheduling diagrams based on these equations.The future
scopes of this project are to implement the proposed IFFT
architecture using Field-Programmable Gate Arrays
(FPGAs) and also obtain the inverse Decimation In
Frequency (IDIF) algorithm of IFFT.

REFERENCES

1 Bharat, K.; Broder, A. (1998): A technique for measuring the relative
size and overlap of public Web search engines. Computer Networks,
30(1–7), pp. 107–117.

2 Broder, A.; Kumar, R.; Maghoul, F.; Raghavan, P.; Rajagopalan, S.;
Stata, R.; Tomkins, A.; Wiener, J. (2000): Graph structure in the Web.
Computer Networks, 33(1–6), pp. 309–320.

3 Chakrabarti, S. (2000): Data mining for hypertext: A tutorial survey.
SIGKDD explorations, 1(2), pp. 1–11.

4 SaadBouguezel, M. OmairAhmad,IMPROVED RADIX-4
ANDRADIX-8 IFFT ALGORITHMSIEEE. Department of Electrical
andComputer Engineering Concordia University 1455 de
MaisonneuveBlvd.West Montreal, P.Q., Canada.

5 Ali Saidi , DECIMATION-IN-TIME-FREQUENCY
IFFTALGORITHM Motorola Applied Research, Paging and Wireless
DataGroup Boynton Beach.

6 RizalafandeChe Ismail and RazaidiHussin High Performance
ComplexNumber Multiplier Using Booth-Wallace Algorithm School
of Microelectronic Engineering Kolej University
KejuruteraanUtaraMalaysia.

7 J.G.Proakis and D.G.Manolakis, Digital Signal
Processing,Principles,algorithms and applications Prentice Hall India
Publication.

8 J.A.Hidalgo,V.Moreno-Vergara,O.Oballe, A Radix-8 Multiplier
UnitDesign For SpecficPurpose,Dept of the Electronica
,E.T.S.I.Industriales

9 C. S. Burrus and T. W. Parks,IDFT/IFFT and Convolution
Algorithms,NewYork,NY : John Wiley,1985.

10 A. Saidi , Generalized IFFTalgorithm,Proc. ICC,pp.227-231,May
1993.[8]

AUTHOR PROFILE

Mr. B. Anil Kumar , M.Tech working as Assistant
professor ,in the Department of Electronics and
communication , Mallareddy Institute of Engineering
and Technology, Hyderabad. He studied B.Techin
Electronics and Communications Engineering from
JNTU college of Engineering, JNTUH, Hyderabad,
Telangana and M.Techin VLSI SYSTEM DESIGN
From Aurora college of engineering, JNTUH,

yderabad,Telangana.

M. Naveen Reddy, is studying B.Tech in

(Electronics & Communication Engineering) at
Mallareddy Institute of Engineering & Technology
(MRIET), Hyderabad. Telangana.

Mr. Vamshi Kollipara, M.Tech, working as

Assistant professor ,in the Department of Electronics
and communication , Mallareddy Institute of
Engineering and Technology

B.Rajesh is studying B.Tech in (Electronics &

Communication Engineering) at Mallareddy Institute
of Engineering & Technology (MRIET), Hyderabad.
Telangana.

