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 
Abstract—Always technical designers choice includes 

algorithms, flowcharts, programming etc and the end users 
requires given input and application output. Based upon this view 
this paper focus on the advancement of Inverse Fast Fourier 
Transform(IFFT) by doing design and observing the performance 
analysis of 64 point IFFT, using Radix-8 algorithm. The 
algorithm  is developed by Inverse Decimation In 
Frequency(IDIF) of IFFT, using Verilog as design entity and 
synthesis are performed in Xilinx. In this architecture the 
numbers of stages are reduced to 75%. 

 
Index Terms-IFFT, IDIF, Verilog, XILINX 

I. INTRODUCTION 

A Inverse Fast Fourier transform (IFFT) is an efficient 
algorithm to compute the Inverse discrete Fourier 
transform (IDFT) and its inverse. There are many 
distinct IFFT algorithms involving a wide range of 
mathematics, from simple complex number arithmetic to 
group theory and number theory. 

A IDFT decomposes a sequence of values into 
components of different frequencies. This operation is useful 
in many fields (see discrete Fourier transform for properties 
and applications of the transform) but computing it directly 
from the definition is often too slow to be practical. 
An IFFT is a way to compute the same result more quickly: 
computing a IDFT of N points in the naive way, using the 
definition, takes N(N-1), N2 arithmetical operations, while 
an IFFT can compute the same result in only Nlog8N , 
N/2log8N operations. The difference in speed can be 
substantial, especially for long data sets where N may be in 
the thousands or millions—in practice, the computation time 
can be reduced by several orders of magnitude in such cases, 
and the improvement is roughly proportional to N / log(N). 
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This huge improvement made many IDFT based algorithms 
practical; IFFTs are of great importance to a wide variety of 
applications, from digital signal processing and solving 
partial differential equations to algorithms for quick 
multiplication of large integers. 

The most well known IFFT algorithms depend upon the 
factorization of N, but there are IFFTs with O(N log N)  
complexity for all N, even for prime N. 
Many IFFT algorithms only depend on the fact that  

e¯ 2∏ j /N is anth primitive root of unity, and thus can be 
applied to analogous transforms over any finite field, such as 
number theoretic transforms. Since the inverse IDFT is the 
same as the IDFT, but with the  

opposite sign in the exponent and a 1/N factor, 
any IFFT algorithm can easily be adapted for it. 

II. LITERATURE SURVEY 

J. W. Cooley and J. W. Tukey. An algorithm for the 
machine calculation of complex Fourier series.  

Mathematics of Computation, 1965. A fast algorithm for 
computing the Discrete Fourier Transform . (Re)discovered 
by Cooley &Tukey in 19651 and widely adopted there after  
has a long and fascinating history.Explained the design of 
pipelined structure from    Radix-8 IFFT with IDIF algorithm 
using efficient butterfly structure. The different and dedicated 
structures for the 64 bit-width pipelined radix-8 IDIF 
butterfly  structure are implemented. The main goal of this 
paper is to minimize the number of real multipliers of the 
architectures. This is done by varying the structure of the 
complex multipliers and applying them into the butterflies. 
These structures are widely used in fast and low power 
multiplier architectures. In pipelined Radix-8  IFFT 
structures have been developed with the help of Feed forward 
structures. Feed forward structure provides 16ns for 
performing 8-point IFFT. 

III. EQUATIONS 

The main reason for going with Inverse Fast Fourier 
transform is to reduce the complexity and make mathematical 
calculations easier compared to that of IDFT.The formulae 
what we use in IDFT fails for higher complex stages where 
the calculations become unperformable, So here in IFFT we 
go for higher complex stages with reduced number of 
calculations and complexity. The main difference between 
the calculations performed in IDFT and IFFT is logarithm. 

In this paper we are trying to implement the IFFT using 
DIF with log base 8i.e.,Radix 8 structure implementing 64 
bits of data. 
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General Equations 
M-1 
X(K)=∑x(n)WN------------------ (1) 
N=0 
         N/2-1         N-1 
X(K)=∑x(n)Wnkn+∑x(n)Wnkn -----(2) 
n=0            n=N/2                        

IV.BLOCK DIAGRAM 

 
Figure 2 Butterfly Structure of RADIX-8 

 
In the radix 8 IFFT first we align the data and it is given to 

the input buffer which controls the data and performs the 
distribution  property which allows data to perform their 
operations in a sequence .The next block refers to the 
processing element i.e.,Radix 8 Butterfly structure  ,Where 
the number of stages reduced to 75%.The next and main 
block of the structure is control signal which performs data 
control and processing control.The next block COEF ROM 
allows the processing element t perform the calculations and 
store the result temporarily for future years. 

DESCRIPTION 
Compare to that of radix 2 and radix 4 here in this paper we 

perform radix 8 operations by using the twiddle factors. The 
radix 8 butterfly structure helps us to carry out the complex 
calculations in the easier way. 

In the butterfly structure of Radix 8 point IFFT we have 2 
stages.The number of stages are obtained by reducing the 
complexity using the IFFT.The number of stages are obtained 
as follows below. 

CALCULATIONS 
To find the number of stages mathematically the equation 

is   
                    n=logN8 
N= number of samples 
          n= number of stages 
                   n=log864 
n=2log88 
so,number of stages(n)=2. 

 
S.no Number of complex 

additions 
Number of complex 
multiplication 

N=64 
IDFT 
N(N-1)=64(64-1) 
=4032 

IDFT 
N2=64*64=4096 

N=64 
IFFT 
Nlog8N=64log864 
=128 

IFFT 
N/2log8N=64/2log864 
=64 

N=128 IDFT IDFT 

N(N-1)=128(128-1) 
=16,256 

N2=128*128=16384 

N=128 
IFFT 
Nlog8N=128log8128 
=298.66 

IFFT 
N/2log8N=128/2log8128 
=149.33 

 
From the above table we can conclude that ,InIDFT for the 

higher stages the complexity increases where in IFFT the 
complexity is reduced . 

V.PROCESS OF DECIMATION 

First step of decimation is splitting a sequence in a smaller 
sequences.A sequence of 64 Bit can be splitted in 8 sequences 
of 4 blocks.Here on the first stage carries out the butterfly 
operation by applying the twiddle factor. 

In the second stage the output from the 64 Bit IFFT is split 
into sequence of 8 equal parts.and the initial 32Bits  are 
performed by addition and twiddle factor multiplication and 
then followed 32 Bits perform subtraction and multiplied 
with twiddle factor. 

Twiddle  factors : 
  

 =           
For 64 points,the Twiddle factor is represented as, 
N=64, 
  

 =           =1 
  

 =           =0.7-0.7j 
  

 =           =-j 
  

 =           =-0.7-0.7j 
  

 =           =-1 
  

 =           =-0.7+0.7j 
  

 =           = j 
  

 =           =0.7+0.7j 
  

 =           = 1 
  

 =           = 0.7-0.7j 
  

  =           =-j 
  

  =           =-1 
  

  =           =j 
  

  =           =0.7+0.7j 
  

  =           =1 
  

  =           =-j 
  

  =           =-1 
  

  =           =-0.7+0.7j 
  

  =           =1 
  

  =           =0.7-0.7j 
  

  =           =-1 
  

  =           =j 
  

  =           =-0.7-0.7j 
  

  =           =-1 
  

  =           =-j 
  

  =           =0.7-0.7j 
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Inputs at stage1:- 
112,48,80,26,30,34,62,126,120,-5.656+64.707j,88j,-16.968+1.414j
,-22,-60.802-1.414j,-54j,83.426-1.414j,116,52j,-84,-20j,26,90j-58,
-122j,124,-42.42+1.414j,-92j,19.796+1.414j,-18,57.974-1.414j,50j
,-80.598-1.414j,97.592-0.707j,58j,8j,41.032-0.707j,-98,-88.076+0.
707j,-24+68j,40.076-48.076j,-124,66+56j,-54.662-0.707j,42j,86.6
62-0.707j,40,60j,76.968+0.707j,40+60j,76.968+0.707j,-52j,-99.59
2+39.592j,21.408-0.707j,-69j,-44.032-0.707j,-40+61j,5.248+0.707
j,-88j,-37.248+0.707j,-64+56j,14,57.49-0.707j,-24-70j,-105.49-0.7
07j,-16 

 
 OUTPUTS AT STAGE 1: 
56,56,56,56,-40,24,-8,56,64,64,64,64,-40,24,-8,56,60,60,6

0,60,-40,24,-8,56,68,68,68,68,-40,24,-8,56,58,58,58,58,-40,

24,-8,56,66,66,66,66,-40,24,-8,56,62,62,62,62,-40,24,-8,56,

70,70,70,70,-40,24,-8,56 

 
  INPUTS AT STAGE 2: 
56,56,56,56,-40,24,-8,56,64,64,64,64,-40,24,-8,56,60,60,6

0,60,-40,24,-8,56,68,68,68,68,-40,24,-8,56,58,58,58,58,-40,

24,-8,56,66,66,66,66,-40,24,-8,56,62,62,62,62,-40,24,-8,56,

70,70,70,70,-40,24,-8,56 

 
OUTPUTS AT STAGE 2: 
x(n)=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,

40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,5

9,60,61,62,63 

Bit Reversal process of 64 bit samples 
Normal Data              Bit reversal Data 

   
x(0)=000000            -          x(0)=000000 
x(1)=000001            -          x(32)=100000 
x(2)=000010            -          x(16)=010000 

x(3)=000011            -          x(48)=110000 
x(4)=000100            -          x(8)=001000 
x(5)=000101            -          x(40)=101000 

x(6)=000110            -          x(24)=011000 
x(7)=000111            -          x(56)=111000 
x(8)=001000            -          x(4)=000100 

x(9)=001001            -          x(36)=100100 
x(10)=001010          -          x(20)=010100 
x(11)=001011          -          x(52)=110100 

x(12)=001100          -          x(12)=001100 
x(13)=001101          -          x(44)=101100 
x(14)=001110          -          x(28)=011100 

x(15)=001111          -          x(60)=111100 
x(16)=010000          -          x(2)=000010 
x(17)=010001          -          x(34)=100010 

x(18)=010010          -          x(18)=010010 
x(19)=010011          -          x(50)=110010 
x(20)=010100          -          x(10)=001010 

x(21)=010101          -          x(42)=101010 
x(22)=010110          -          x(26)=011010 

x(23)=010111          -          x(58)=111010 

x(24)=011000          -          x(6)=000110 
x(25)=011001          -          x(38)=100110 
x(26)=011010          -          x(22)=010110 

x(27)=011011          -          x(54)=110110 
x(28)=011100          -          x(14)=001110 
x(29)=011101          -          x(46)=101110 

x(30)=011110          -          x(30)=011110 
x(31)=011111          -          x(62)=111110 
x(32)=100000          -          x(1)=000001 

x(33)=100001          -          x(33)=100001 
x(34)=100010          -          x(17)=010001 
x(35)=100011          -          x(49)=110001 

x(36)=100100          -          x(9)=001001 
x(37)=100101          -          x(41)=101001 
x(38)=100110          -          x(25)=011001 

x(39)=100111          -          x(57)=111001 
x(40)=101000          -          x(5)=000101 
x(41)=101001          -          x(37)=100101 

x(42)=101010          -          x(21)=010101 
x(43)=101011          -          x(53)=110101 

x(44)=101100          -          x(13)=001101 
x(45)=101101          -          x(45)=101101 
x(46)=101110          -          x(29)=011101 

x(47)=101111          -          x(61)=111101 
x(48)=110000          -          x(3)=000011 
x(49)=110001          -          x(35)=100011 

x(50)=110010          -          x(19)=010011 
x(51)=110011          -          x(51)=110011 
x(52)=110100          -          x(11)=001011 

x(53)=110101          -          x(43)=101011 
x(54)=110110          -          x(27)=011011 
x(55)=110111          -          x(59)=111011 

x(56)=111000          -          x(7)=000111 
x(57)=111001             -       x(39)=100111 
x(58)=111010             -       x(23)=010111 

x(59)=111011             -       x(55)=110111 
x(60)=111100             -       x(15)=001111 
x(61)=111101             -       x(47)=101111 

x(62)=111110             -       x(31)=011111 

x(63)=111111             -       x(63)=111111 

 
Discrete Fourier Transform, or simply referred to as DFT, 

is the algorithm that transforms the time domain signals to the 
frequency domain components. DFT, as the name suggests, is 
truly discrete; discrete time domain data sets are transformed 
into discrete frequency representation. In simple terms, it 
establishes a relationship between the time domain 
representation and the frequency domain representation. Fast 
Fourier Transform, or IFFT, is a computational algorithm 
that reduces the computing time and complexity of large 
transforms. IFFT is just an algorithm used for fast 
computation of the IDFT. 

Applications of IFFT and IDFT 

IDFT can be used in many digital processing systems 
across a variety of applications such as calculating a signal’s 

frequency spectrum, solving partial differential applications, 
detection of targets from radar 
echoes, correlation analysis,  
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computing polynomial multiplication, spectral analysis, 
and more. IFFT has been widely used for acoustic 
measurements in churches and concert halls. Other 
applications of IFFT include spectral analysis in analog video 
measurements, large integer and polynomial multiplication, 
filtering algorithms, computing isotopic distributions, 
calculating Fourier series coefficients, calculating 
convolutions, generating low frequency noise, dense 
structured matrices, image processing, and more. 

Summary of IFFT Vs. IDFT 

The Discrete Fourier Transform plays a key role in physics as 
it can be used as a mathematical tool to describe the 
relationship between the time domain and frequency domain 
representation of discrete signals. However, to reduce the 
computing time and complexity of large transforms, a more 
complex but less time-consuming algorithm such as the Fast 
Fourier Transform can be used. IFFT is an implementation of 
the IDFT used for used for fast computation of the IDFT. In 
short, IFFT can do everything a IDFT does, but more 
efficiently and much faster than a IDFT. It’s an efficient way 

of computing the IDFT.Compare to that of radix 2 and radix 4 
here in this paper we perform radix 8 operations by using the 
twiddle factors. The radix 8 butterfly structure helps us to 
carry out the complex calculations in the easier way. In the 
butterfly structure of Radix 8-point IFFT we have 2 stages. 
The number of stages are obtained by reducing the 
complexity using the IFFT. The number of stages are 
obtained as follows below. 

Block Diagram: 

 
Block Diagram: 
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VI.   SOFTWARE SIMULATION AND RESULTS 

The proposed IFFT block of signal length 64 is been 
simulated and synthesized using the Xilinx Design 

Suite16.1. The RTL block thus obtained for the decimation 
intime domain radix -8Inverse Fast Fourier transform 
algorithm isshownThe RTL view of the butterfly structure 
obtained after thesimulation of the 64-point IFFT block, 
Decimation in timedomain is shown next and also the internal 
architectureofthe butterfly block is shown. 

 

 
 

RTL Schematic:- 
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VII. CONCLUSION   

This project describes the efficient use of VLSI                          
for the implementation of radix 8 based  
IFFT architecture and the wave form result of the various 

stages has been obtained successfully. Compared to previous 
method the accuracy in obtained results has been increased 
with the help of efficient coding in VERILOG. The accuracy 
in results depends upon the equations obtained from the 
butterfly diagram and then on the correct drawing of 
scheduling diagrams based on these equations.The future 
scopes of this project are to implement the proposed IFFT 
architecture using Field-Programmable Gate Arrays 
(FPGAs) and also obtain the inverse Decimation In 
Frequency (IDIF) algorithm of IFFT. 
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