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Abstract: Diagnosis of Neoplasm is an utmost recurrent and 

lethal technique for detecting a malignant primary tumor. 

Imaging techniques empower researchers and medical 

practitioners to evaluate disorders and activities inside the human 

brain earlier than performing invasive surgery. Here presents the 

spotting and detection of brain tumor and pancreatic tumor 

segmentation and classification progression with several stages 

DBCWMF algorithm filter with histogram equation, Precise 

Fuzzy C-segmentation, and SIFT extraction and classification 

with Sparse representation. These techniques provide a better 

ability in clinical practices in terms of speed, accuracy, 

innovation. Experimental results were evaluated using TCIA 

database and hospital database, where the proposed approaches 

were verified simultaneously with data progression and 

incredibly effective for brain and pancreatic tumor in MR images 

and CT scan images both. 

 
Keywords : Brain tumor, DBCWMF, Fuzzy C-segmentation, 

SIFT, Sparse representation, pancreatic tumor. 

I. INTRODUCTION 

Soft computing is immensely exerted in medical scrutiny 

medical image processing. MRI scans are exerted to create 
images all body parts and it dispenses an effective and rapid 

way for analysis of the brain tumor and pancreatic tumor 

exerted as an important tool while doing surgical and 

clinical atmosphere for the reason that of its characteristics 

similarly greater soft tissue diversity, higher spatial 

determination and with contrast significant analytical 

imaging method to get premature identification the brain 

tumor [1]. Brain imaging of MRI shows a vital key part in 

succor radiologists has to be approached patients for 

analysis and remedy [2]. The utmost eminent significant of 

medical image perusal in general, brain magnetic resonance 

image (MRI) examination in particular, is to extract clinical 
data that help to revamp diagnosis and remedy of ailment. 
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Brain tumors are one of the utmost recurrent brain ailments, 

so the classification of brain tumors in MRI is essential in 

medical diagnosis [3]. 

II. RELATED WORK 

With CNN bounding and elective scrawls as user 

interactions and user afford images which are tested, 

nonetheless they might possibly be gained by involuntary 

detection [36] to auxiliary growth in efficiency Guotai, et al.  

[4]. The Noise reduction has made a stage in preprocessing 

imaging classification as stated by Sebe et al. Here the 

author has been analyzed exert Quadrature Mirror Filter and 

Gabor uses for noise reduction purposes has given emphasis 
to the need for preprocessing. The method is needed in order 

to eliminate artifacts delay additional processing of MRI 

images. Pre-processing images stay essential for analysis in 

Computer-Aided Diagnosis. The author exerted a square 

designed to structure element and median filtering [5]. 

exerted the elimination of artifacts in a preprocessing stage. 

It will Creates sure set 255 as a threshold value of aimed at 

artifacts elimination and 200 as its threshold values for the 

elimination of the undesirable a part of a whole of the image 

[6]. Author Ratan has exerted an altered type of 

preprocessing for decreasing the processing volume of data. 
Total 128 images were processed into 3 clips [7]. In Mohan 

et al. article, here analyzed sundry articles that ensured 

handle image preprocessing methods. He states that 

although sundry methods to eliminate noise-introducing 

negative result on the segmented part of the image [8]. 

Texture features were associations with bidirectional of 

associative memory category on artificial neural network is 

to be classifying the soft tissue parts in brain CT images 

Sharma,. It was combined with edge features and gray level 

classified using SVM for brain CT images Padma 

Nanthagopal, [9]. Combining of texture features with Naive 

Bayesian classifier from benign tumor and malignant tumor 
images. Kharrat combining of texture features with SVM 

classifier is to classify those normal tumors, benign tumors 

and malignant tumors images.  Padma combined co-

existence texture features with (PNN) probabilistic neural 

network classifier used to classify human brain CT scan 

images [10]. This paper explains about 4 Stages first 

conversions of noise MRI images to filtered DBCWMF 

images.  
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After Conversion of a filtered image the second step is a 

detection of brain and pancreatic tumor part Fuzzy C-

segmentation is carried out through Sparse Representation 

Classifier. Involuntary segmentation of multi-atlas process 

now broadly used for brain imaging. 

reference section. In the case of exclusion of references, it 

should be less than 5%. 

III. PROPOSED METHODOLOGY 

The methodology proposed involves the Decision Based 

Couple Window Median Filter, histogram equation, Fuzzy 

C-segmentation SIFT extraction and classification with 

Sparse representation (Fig. 1). 

 

Essential phases involved the proposed Methodology: 

i) MR image and CT scanned Medical image input 
ii) Preprocessing: DBCWMF image in filter and histogram 

equation 

iii) Segmentation: Fuzzy C- segmentation with identifying 

Neoplasm 

iv) Feature extraction: SIFT image extraction  

vi) Classification: Sparse representation of accuracy. 

 

 
 

Fig.1. Block diagram proposed 

 

A. Decision Based Couple Window Median Filter 

algorithm 

 

After median filter imaging leftover noise pixels free be a 

selection of by the window median filter with changing 

pixels of boisterous [11]. The method from the first image 

noise pixel and ultimately the pixel of a noise image ends. 

The scanned caused image entitled as a restored image. The 

mainly 3/4th or grater pixels noisy are transformed into 

pixels’ noise-free with a median filter. Except affected 

pixels left over free pixel noise picks the window as pixels 

(i.e. 0 and 255). 

 
0 ˂ A(,n) ˂ 255, Noise free    

      X(y,z) = Y(y,z)                                 

      (1) 

 

                 M= (2n+1) a (2n+1)                                           

(2) 

 

             M(y,z) = mean {Z(y,z)}                                        (3) 

 

B. Histogram equalization 

 

Histogram equalization progresses the areas of the pixels 

that are overexposed and underexposed production the 

pixies histogram unchanging. Before and after histogram 

equation pixels find the middle element in the window 

compute the function of cumulative distribution of the 

values in the window [12]. 

      cdf(l)=cdf(l)+cdf(l-1)                         (4) 

                                        (5) 

 

C. Segmentation  

Fuzzy C mean understand the imaging; a suitable segment is 

essential.  Foremost task is to fit clusters with into 1 or 

more. The collected function is assumed as [13].  

 

         
  

   
 
            

          (6) 
 

1≤r<   ∞ 

Where, 

 r is real number < 1; 

vab is the degree ofxa members of in the l cluster; 

xa is the d-dimensional ath of data; 

cb is the center of the cluster d-dimension;  

 

D. Feature Extraction SIFT 

 

This is used to achieve the image feature extraction. This 

performance is eventually used for matching image [14]. An 

SIFT improvement with the comparative method of 

measuring the entire response belongs to the neighbor’s 

interest point [15]. Key point identifiers can be massively 

repeatable.  

 

A(x, y,σ) = (B(x, y, kσ) – G(x, y,σ) × C(x, y))                          
(7) 

 

E. Screening Sparse representation classification 

 

[16-17]. The principal aim of SR remains input signal 
linear combination done SR vector and ample dictionary. 

The key problems in SR are how to construct and solve 

vector done with ample dictionary. Widespread tools to 

build the dictionary contains the method of elective 

directions (K-SVD) k-singular value a decomposition 

online learning and algorithm discrete cosine transform. 

This effectually computed through optimization or greedy 

methods. 

The training data matrix A, the known label vector B, and x 

observation. 

SR Screening: Calculate 
Ω = faT1 a; aT2 a; · · · ;aT n ag  

T=transpose),.Ax = fa(1); a(2); : : : ; a(z)g with 
 

z=min fn=log(c); mg         (8) 

where aT (i)a is the ith major element Ω. 

Regression: Crack the 

normal problem of least 
square between Ab and a. 

Namely, compute β = ab-1a  
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where ab-1 is the Moore-Penrose inverse. 

 

SR Classification: Allocate the testing thought by 

gnscr(a) = arg miny2[Y] 

                       θ(a; Abyβ^y)                       (9) 

Where θ denotes the principal angle. Break ties 
deterministically. 

SR Output: The estimated class label gnscr (a) 

IV. RESULTS  

Experimental carry out with 512 x 512 brain and 256 x 256 

pancreases images 30 to 60 degrees respectively via 

MATLAB 2013aCT scan and MR images are used. 

Fragmented 100 images as 40 for testing and 60 for training 

by TCIA database and hospital database [18]. 

 

 

i ii iii 

   

iv v vi 

   
 

 

 

 
 

Fig.2. (i) Brain input (ii) Prepressing (iii) Histogram output 

(iv)Segmentation (v) &(vi) Feature extraction(vii) 

Histogram graph 

 

 

 

 

 

Fig.3. ROC curve –Brain   

 

 

i ii iii 

   

iv v vi 

   
 

Fig.4. (i) Pancreas input (ii) Prepressing (iii)Histogram 

output (iv) Segmentation (v) &(vi) Feature extraction (vii) 

Histogram graph 
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Fig.4. (i) Pancreas input (ii) Prepressing (iii)Histogram 

output (iv) Segmentation (v) &(vi) Feature extraction (vii) 
Histogram graph 

 

Fig.5.  ROC curve –pancreases 

 

TABLE I. Brain-parameters 

 

Parameters MSE PSNR SSIM NCC 

Median 230.22 21.41 0.4021 1 

DBCWMF 101.51 28.87 0.7735 1 

 

TABLE II. Pancreatic-parameters 

 

Parameters MSE PSNR SSIM NCC 

Median 176.23 26.16 0.6123 1 

DBCWMF 88.34 30.27 0.8267 1 

 

      
 

  
                   

 

   

   

   

   

            

 

             

   

   
                                               

 

                         
           

 
   

 
   

       
 
   

 
   

                            

 

TABLE III. Performance Analysis 

 

 Brain Pancreatic 

Accuracy 93.67 % 89.21 % 

Precision 97% 90.86 % 

Specificity 97 % 91.26 % 

Recall 91.24 % 84.67 % 

 

                      
     

           
                           

 

                           
  

     
                                             

 

                                
  

     
                                            

 

TABLE IV. Accuracy Analysis with different Models-Brain 

 

 Probability 

neural 

networks 

(PNN) 

ANN Sparse 

Representation 

Accuracy 83.33 % 82.24 93.67 % 

 

TABLE V. Accuracy Analysis with different models- 

Pancreatic 

 

 Probability 
neural 

networks 

(PNN) 

 

ANN Sparse 
Representation 

Accuracy 80.33 % 82.24% 91.21 % 
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Fig.6. Accuracy Analysis with different Models-Brain 

 

 
 

Fig.7.  Accuracy Analysis with different models- Pancreatic 

V. CONCLUSION 

Imaging technology has had rapid growth in imaging field. 

The proposed methodology represents spotting Tumor on 

both pancreatic CT scan and brain MR images filtered using 
DBCWMF, which is higher than median filter and 

Histogram equation. The segmentation with Fuzzy C-mean 

algorithm and the classification is done by employing 

Screening Sparse representation and has higher results 

comparing with ANN and PNN. 
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