
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-4, November 2019

3008

Retrieval Number: D7439118419/2019©BEIESP
DOI:10.35940/ijrte.D7439.118419
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Better Communication Tool for Specially Disabled
Gogineni Saikiran, Anjusha Pimpalshende, Porika Dhanrajnath

Abstract: Sign language is widely used when a dumb
communicates. However, non-sign-language people find it
difficult in interpreting them. So, we had come up with a system
that enables speech impaired to speak with an artificial voice in
public communities using Artificial intelligence techniques. we
propose a hybrid-weighted metric known as weighted pruning in
deep convolutional neural networks. In this work, we report
experiments of weighted pruning. we show that using a weighted
pruning strategy we can achieve significant speed up in Faster
RCNN object detection model by discarding 50% of filters. In this
paper we show evidences to our claim by reporting mean Average
Precision of weighted pruned CNN is slightly higher than
existing pruning techniques. The former part of the paper focus
on moulding convolutional neural networks in terms of their
speed and scalability for deploying them on mobiles, embedded
and further small gadgets. The latter part of the paper describes
novel approaches in letting dumb speak as fast as normal person
in public, without time lapse using natural language algorithms
and recommendations.

Keywords,Faster RCNN, Hand gesture recognition,
Recommendations, SQL, TD IDF vectorizer, Weighted pruning.

I. INTRODUCTION

The system initially aims at building a Faster RCNN hand
gesture object detector that’s capable of reducing

computations but retaining its original accuracy. On top of
this detector, better and faster communication tool for
specially disabled (dumb) is built. Over the past few years,
deep convolutional neural networks have been very
successful in computer vision recognition and detection
tasks. Indeed, with each passing year, the performance of
these networks is increasing with increase in depth of layers.
This increase in depth accounts for increase in no of
parameters and computations. Suppose if we perform a
convolution operation with k filters, the resulting matrix will
have depth equal to k. Of-Course out of these k filters some
might be either redundant or doesn’t contribute to actual
task end task. The basic intuition is to remove such filters
which eventually result in reducing unnecessary
computations and a shrink in output tensor.

Manuscript published on November 30, 2019.
* Correspondence Author

Gogineni Saikiran*, CMR College of Engineering & Technology,
Hyderabad, India

Anjusha Pimpalshende, CMR College of Engineering & Technology,
Hyderabad, India

Porika Dhanrajnath, CMR College of Engineering & Technology,
Hyderabad, India

 © The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

The challenge is to retain original accuracy. Generally, to
compress these CNNS we choose to prune either weights or
filters. However, we constrain our self to prune filters (in
convolution layers) rather than weights (in last fully
connected layers) because they account for most of the
floating-point operations.

All the existing works on filter pruning follows a similar
recipe of choosing a single function (f) and ranking the
filters based on the score generated by this function. This
function determines the importance of each filter for the end
task. In discarding the 50% of filters out of n filters, we set
m=(n/2). The top m ranked filters are retained. The resulting
pruned network is fine tuned. The existing works consider
one among these (1) mean activation (2) L1 norm (3)
entropy (4) average percentage of zeros (5) sensitivity as the
required function to rank filters. Unlike above strategies, our
method takes combined weighted soft-max score of above
two mentioned functions (L1 norm and entropy) while
ranking filters. We termed this to be weighted pruning. The
Faster RCNN developed on this approach has retained
approximately its original accuracy by reducing 50% of
filters.
Consider an input image M of shape (ni×hi ×wi) for the ith
convolution layer. Here ni refers to no of channels in input
tensor. The output tensor of this convolutional operation
results in the shape (ni+1×hi+1× wi+1). Filter F of shape
(ni+1×ni×k×k) is used. In this convolution layer there are
ni+1filters, each of shape (ni×k×k). In these ni+1filters, only
certain are important, the rest can be omitted. [1] used an
approach of calculating average percentage of zeros in each
activation channel. Filters responsible for higher percentage
of zeros in their corresponding activation channels are
discarded. But in this way, we might end up in retaining
values near to zeros as there are not actually zeros. [2] used
L1 norm as criteria to find the importance of each filter. L1
norm of a filter is sum of its absolute weights. Filters with
small L1 norm tend to produce feature maps with weak
activations as compared to other filters in that layer. L1
norm of a filter is small, then weights in the filter will be
small and hence produce small activations. These small
activations may not influence end output. So, corresponding
filters can be pruned away. [3] used concept of entropy.
Entropy is measure of randomness or uncertainty. larger
value of entropy means system possess more information. If
activation channel consists of less information,
corresponding filter can be pruned. In workflow of entropy-
based approach, the output tensor of shape (ni+1×hi+1× wi+1)
is flattened to a vector of shape (ni+1×1) after applying max-
pooling. These ni+1values represent scores of corresponding
activation channels for given image.

https://www.openaccess.nl/en/open-publications
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.D7439.118419&domain=www.ijrte.org

Better Communication Tool for Specially Disabled

3009

Retrieval Number: D7439118419/2019©BEIESP
DOI:10.35940/ijrte.D7439.118419
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

To calculate entropy more output values are needed, which
are collected using a batch or subset of size m from training
data. As a result, matrix E of shape (m×ni+1) is obtained for
all m images. For each channel j, we focus on distribution
E:,j. Each column of matrix represents single activation
channel for given m images. If entropy of any column of
this matrix is low, then filter corresponding to such
activation channel can be pruned.
Because that filter produces activation channel whose
information is similar to all images. To compute entropy
value of any column or channel of matrix E we split channel
into s different bins and calculate entropy of each bin.
Finally, the entropy is calculated as follows.

 H j = - ∑ pi log (pi)

Where, pi is the probability of bin i, Hj is the entropy of
channel j. A smaller value of Hj means channel j is less
important. Channel j can be removed by pruning filter
corresponding to channel j. If the feature map corresponding
to filter produces same output for all the input then, this
feature map and corresponding filter will not contribute to
end output. We need to prune away such filters.

II. METHODOLOGY

To efficiently prove our point, it’s crucial to look at some

general facts other than the final performance of pruned
model. To do so we draw an analogy with the products
available in the market and observe that process of retaining
few important filters is akin to purchasing few important
products in the market. While we purchase a product, the
importance of product is determined by several factors such
as cost, likeliness, reliability and so on rather than by a
single factor. Similarly, several characteristics are to be
given attention while deciding importance of a filter rather
than score generated by single function. Here, after severe
experimentation we propose

2.1 Variant Score function of a filter

The existing works such as L1 norm consider the sum of
weights of a filter in determining its importance. But during
our experimentation we found odd filters whose sum of
weights is large but actually don’t contribute to end task.

This might be because weights in filter are larger but similar
or not properly learnt. These odd filters despite of their large
L1 norm score produce similar activations to all images.
Entropy of these filters is low. But when we opt to choose
L1 norm as criteria we end up retaining these filters instead
of discarding them. So, some other criteria should be
helping hand to this L1 score to determine actual importance
of a filter. Generally, small filters produce small activations
resulting in small entropy. If the curve between L1 norm and
entropy is strictly increasing or linear then we would have
chosen one of these as criteria to rank filters. But
experimentally we found at certain instances the curve tends
to be nonlinear. As mentioned above some large filters
resulted in low entropy as they produced similar activations
for many images without differentiating them. The vice
versa is also possible, a high entropy accompanied by weak

weights in certain filters. But this case is rare to observe.
However, we propose a medium level ground to balance this
relation by retaining filters that tend to be good at both L1
norm and entropy. This strategy of pruning is performed
layer by layer starting from last layer. Here L is the vector
containing L1 norm of all filters in the layer. E is the vector
containing entropy scores of all filters in the layer. Here we
propose soft-max applied to each filters entropy score to
relatively compare how important this filters entropy score
is against other filters entropy scores. Soft-max of a value
always lie in [0,1]. In below equations j takes values from 1
to n.

Score of a filter fi = Soft-max (Li) × soft-max (Ei)

Soft-max (L i) = (eith filter L1 norm) / (∑ ejth filter L1 norm)

Soft-max (E i) = (eith filter entropy score) / (∑ ejth filter entropy score)

Though L1 norm of a filter is high but entropy is relatively
small then resultant score of a filter is negligible (for
example o.8 × 0.2 = 0.16) and filter is discarded. If both L1
norm and entropy of a filter are moderate the score of a filter
is accepted (for example o.6 × 0.4 = 0.24). If both are high,
filter is perfect (0.8 × 0.8 = 0.64). This new strategy of
pruning has produced mean Average precision that is higher
than pre-existing strategies when 50% of filters are pruned
away. Mean Average precision is slightly less but
comparable when 25% of filters are pruned.

III. EXPERIMENTATION

In this section, we will show evidences for all our claims.
We will compare the performance of different pruning
techniques listed so far and will plug-in better
communication algorithms on top of faster-RCNN.

3.1 Pruning Faster RCNN

Vgg-16 is the base component of faster RCNN model and
other object detection specifics are built on top of it. We
have chosen the pascal-VOC 2007 dataset [10] as [4] had
already experimented with it using random pruning. So, we
will consider experimenting with same dataset and
demonstrate how this new strategy of weighted pruning
slightly increased accuracy compared to other pruning
methods. We first plugin standard unpruned vgg-16 into
faster-RCNN and then train it. This model gives us mean
Average Precision of 0.66. Later after plugging-in weighted
pruned vgg-16, the mean Average Precision observed is
0.612. we can take a trained faster RCNN model and prune
(weighted pruning) it directly. In this case, the no of frames
per second are increased from 7.5 to 13. There is no
significant drop in accuracy with this strategy. The accuracy
obtained is slightly greater than rest of existing individual
pruning techniques.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-4, November 2019

3010

Retrieval Number: D7439118419/2019©BEIESP
DOI:10.35940/ijrte.D7439.118419
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

 Level of pruning

Heuristics 25% 50%

Weighted pruning 0.646 0.612 Faster RCNN Baseline Pruning (50%)

Random 0.647 0.600 mAP 0.66 0.652

Mean Activation 0.647 0.601 fps 7.5 13

Entropy 0.637 0.584

L1 – norm 0.628 0.608 Table 2: Results of Object Detection when

Sensitivity 0.636 0.592 directly pruning(weighted) a fully tra ined

Table 1: Results of Object Detection obtained by Faster-RCNN
Plugging in different pruned vgg-16 models in to
Faster RCNN

3.2 Natural Language Processing on top of Faster-
RCNN

Indeed, our aim is not just to restrict to weighted pruning.
Designing a system that maps sequential hand gestures to
words or sentences in real time scenarios and finally spelling
them out is highly challenging in consideration with speed
and accuracy. The American sign language dataset consist
of 29 gestures. Our weight pruned Faster-RCNN is capable
of detecting hand in an image and classifying it to one of
these 29 gestures. 26 gestures represent to 26 alphabets A-Z.
one gesture represent NULL GESTURE to usually confirm
end of either word or sentence. The other 2 gestures are
meant for two recommendations that we discuss later.
Weight pruned and fine-tuned Faster-RCNN achieved a
descent accuracy on this custom sign language dataset. On
test set, 90% of gestures are classified correctly. However,
there are several challenges while pronouncing words or
statements quickly. Let’s limit our discussion to words and

further move on to sentences.
Challenge 1: If user(dumb) wants to spell a word ‘ring’, he

needs to make sequence of gestures representing
corresponding letters in word ‘ring’. Finally, user makes

null gesture to confirm end of word and spells out using a
speaker API. We used pyttsx3 to pronounce words. If
Faster-RCNN incorrectly classifies one of the gestures, then
it may be pronounced as ‘sing’ rather than ‘ring’. This rate

of misclassification is to be arrested to the possible extent.
So, we decided to use a time buffer of 3 seconds to
recognise a single gesture. Pruned Faster-RCNN detects 13
frames per second, faster than unpruned Faster-RCNN. This
results in detection of 39 frames per 3 seconds and makes
our task easy. In these 39 frames our model is working to
classify same single gesture. It results in 39 predictions for a
single gesture in 3 seconds. Picking out the largely
occurring prediction has arrested misclassification of a
gesture. After completion of 3 seconds, notification occurs
on web cam asking user to enter the next gesture.
Challenge 2: Another issue to be dealt is quickness in
spelling a word. While pronouncing a word ‘television’ it

takes ten time-steps, each time step responsible for

identifying a single character in the word ‘television’. This

result in huge time delay. Recommendations come into
rescue. After making sequence of gestures for sub-string
‘te’, two words (‘television’ and ‘teeth’) pop up on screen as

recommendations asking to choose between the two. If user
continues and make another gesture ‘a’ in addition to ‘te’

without choosing any of two recommendations, then
recommendations r1 and r2 dynamically changes to (‘tear’

and ‘teacher’). This style of recommending continues till a

null gesture or a recommended word is chosen. When a null
gesture or recommended word is chosen then pyttsx3
speaker spells the word and clears the screen. Now instead
of t time steps we produce a word in t/4 or t/8 time-steps,
reducing delay in time.
suggesting two random words that start with given sub
string is not accepted. Generally, if we find patterns in our
daily life, we end up using hardly same 5000 words daily. In
similar manner recommendations should work with
knowledge of frequently used previous words. The system
uses a SQL database consisting of top 40000 frequent words
from NLTK brown corpus. Initially frequencies of all words
are set to zero. When user choose null gesture or r1 or r2,
the frequency of corresponding word gets incremented.
System always recommend words that possess high
frequency in database and that start with given substring.
After immediate end of present word, we are no more left
with sub string to make recommendation until the first
gesture of next word is made. In this gap we can recommend
a sentence possessing the context of previous word (through
TD IDF VECTORISER). We have chosen a dataset
consisting of most widely used 2000 daily life sentences.
Instead of passing last word as query to TD IDF document
parser (usually turns to be string searching algorithm) we
passed last two or three words (tri gram) to retain the actual
context. For example, if last two words spelled are (‘which’,

’dress’) the sentence recommendations might be (‘which

dress is nice among these’, ‘which dress costs least’). The

algorithms capability steadily increases as user frequently
use it.

https://www.openaccess.nl/en/open-publications

Better Communication Tool for Specially Disabled

3011

Retrieval Number: D7439118419/2019©BEIESP
DOI:10.35940/ijrte.D7439.118419
Journal Website: www.ijrte.org

Published By:
Blue Eyes Intelligence Engineering
and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

FIGURE 1: comparing mean average precision score of directly Figure 2: weight pruned Faster-RCNN
pruned Faster RCNN on pascal-VOC 2007 dataset [10] over detecting the hand and classifying it as
different pruning techniques. Alphabet ‘y’
 Alphabet ‘y’
we can observe from fig1 that weighted pruning attained a
mean average precision of 0.610 which tends to be greater
than remaining pruning techniques. Generally, this helps
Faster RCNN to increase no of frames per second and
decrease computation cost by 50%.

Figure 3: model recognises gesture1 as alphabet ‘r’ and

recommends words such as ‘right’ and ‘rather’. User can

choose any of the recommendations as per his need with
ease of 1 time-step. If user wants to spell different words
such as ‘route’. Then user can show second gesture to

system.

Figure 4: If user just spelled word ‘right’ using pyttsx3 (text

to speech converter). The system recommends sentences
(such as ‘call your parents right now’) that user would like

to spell before entering first gesture of second word. But we
used bigram (last 2 words for sentence recommendations).

IV. CONCLUSION

with this application specially disabled (dumb) can speak
sentences and words in public communities with ease and
quickness. The model built on weight pruned faster RCNN
and simple NLP algorithms can be easily deployed on
smaller gadgets. It is highly scalable and flexible. Being run
on computer vision techniques, this also benefits users from
wearing overhead sensors. Unlike always showing gestures
to mobile and speak, a similar hardware like watch, that can
be attached to hand can be built.

REFERENCES

1. H. Hu, R. Peng, Y. Tai, and C. Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. CoRR,
abs/1607.03250, 2016.

2. H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

3. J.-H. Luo and J. Wu. An entropy-based pruning method for cnn
compression. arXiv preprint arXiv:1706.05791, 2017.

4. Deepak Mittal, Shweta Bhardwaj, Mitesh M. Khapra, Balaraman
Ravindran. Recovering from Random Pruning: On the Plasticity of
Deep Convolutional Neural Networks. arXiv:1801.10447v1 [cs.CV] 31
Jan 2018

5. R. Girshick. Fast R-CNN. In Proceedings of the International
Conference on Computer Vision (ICCV), 2015.

6. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

7. Y. Ioannou, D. Robertson, J. Shotton, R. Cipolla, and A. Criminisi.
Training cnns with low-rank filters for efficient image classification.
arXiv preprint arXiv:1511.06744, 2015.

8. Xiangyu Zhang, Jianhua Zou, Xiang Ming, Kaiming He, and Jian Sun.
Efficient and accurate approximations of nonlinear convolutional
networks. In CVPR, 2015b.

9. Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A
Horowitz, and William J Dally. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In ISCA, 2016a.

10. M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman. The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results.
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/ind
ex.html

http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html
http://www.pascalnetwork.org/challenges/VOC/voc2007/workshop/index.html

