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Abstract: Sign language is widely used when a dumb 
communicates. However, non-sign-language people find it 
difficult in interpreting them. So, we had come up with a system 
that enables speech impaired to speak with an artificial voice in 
public communities using Artificial intelligence techniques. we 
propose a hybrid-weighted metric known as weighted pruning in 
deep convolutional neural networks. In this work, we report 
experiments of weighted pruning. we show that using a weighted 
pruning strategy we can achieve significant speed up in Faster 
RCNN object detection model by discarding 50% of filters. In this 
paper we show evidences to our claim by reporting mean Average 
Precision of weighted pruned CNN is slightly higher than 
existing pruning techniques. The former part of the paper focus 
on moulding convolutional neural networks in terms of their 
speed and scalability for deploying them on mobiles, embedded 
and further small gadgets. The latter part of the paper describes 
novel approaches in letting dumb speak as fast as normal person 
in public, without time lapse using natural language algorithms 
and recommendations. 

Keywords,Faster RCNN, Hand gesture recognition, 
Recommendations, SQL, TD IDF vectorizer, Weighted pruning. 

I. INTRODUCTION 

The system initially aims at building a Faster RCNN hand 
gesture object detector that’s capable of reducing 

computations but retaining its original accuracy. On top of 
this detector, better and faster communication tool for 
specially disabled (dumb) is built. Over the past few years, 
deep convolutional neural networks have been very 
successful in computer vision recognition and detection 
tasks. Indeed, with each passing year, the performance of 
these networks is increasing with increase in depth of layers. 
This increase in depth accounts for increase in no of 
parameters and computations. Suppose if we perform a 
convolution operation with k filters, the resulting matrix will 
have depth equal to k. Of-Course out of these k filters some 
might be either redundant or doesn’t contribute to actual 
task end task.  The basic intuition is to remove such filters 
which eventually result in reducing unnecessary 
computations and a shrink in output tensor.  
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The challenge is to retain original accuracy.   Generally, to 
compress these CNNS we choose to prune either weights or 
filters.  However, we constrain our self to prune filters (in 
convolution layers) rather than weights (in last fully 
connected layers) because they account for most of the 
floating-point operations. 

All the existing works on filter pruning follows a similar 
recipe of choosing a single function (f) and ranking the 
filters based on the score generated by this function. This 
function determines the importance of each filter for the end 
task. In discarding the 50% of filters out of n filters, we set 
m=(n/2). The top m ranked filters are retained. The resulting 
pruned network is fine tuned. The existing works consider 
one among these (1) mean activation (2) L1 norm (3) 
entropy (4) average percentage of zeros (5) sensitivity as the 
required function to rank filters. Unlike above strategies, our 
method takes combined weighted soft-max score of above 
two mentioned functions (L1 norm and entropy) while 
ranking filters. We termed this to be weighted pruning. The 
Faster RCNN developed on this approach has retained 
approximately its original accuracy by reducing 50% of 
filters.   
Consider an input image M of shape (ni×hi ×wi) for the ith 
convolution layer. Here ni refers to no of channels in input 
tensor. The output tensor of this convolutional operation 
results in the shape (ni+1×hi+1× wi+1). Filter F of shape 
(ni+1×ni×k×k) is used. In this convolution layer there are 
ni+1filters, each of shape (ni×k×k). In these ni+1filters, only 
certain are important, the rest can be omitted. [1] used an 
approach of calculating average percentage of zeros in each 
activation channel. Filters responsible for higher percentage 
of zeros in their corresponding activation channels are 
discarded. But in this way, we might end up in retaining 
values near to zeros as there are not actually zeros.  [2] used 
L1 norm as criteria to find the importance of each filter.  L1 
norm of a filter is sum of its absolute weights. Filters with 
small L1 norm tend to produce feature maps with weak 
activations as compared to other filters in that layer. L1 
norm of a filter is small, then weights in the filter will be 
small and hence produce small activations. These small 
activations may not influence end output. So, corresponding 
filters can be pruned away. [3] used concept of entropy. 
Entropy is measure of randomness or uncertainty. larger 
value of entropy means system possess more information. If 
activation channel consists of less information, 
corresponding filter can be pruned. In workflow of entropy-
based approach, the output tensor of shape (ni+1×hi+1× wi+1) 
is flattened to a vector of shape (ni+1×1) after applying max-
pooling. These ni+1values represent scores of corresponding 
activation channels for given image.  
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To calculate entropy more output values are needed, which 
are collected using a batch or subset of size m from training 
data. As a result, matrix E of shape (m×ni+1) is obtained for 
all m images. For each channel j, we focus on distribution 
E:,j. Each column of matrix represents single activation 
channel for given m images. If entropy of any column of 
this matrix is low, then filter corresponding to such 
activation channel can be pruned.  
Because that filter produces activation channel whose 
information is similar to all images. To compute entropy 
value of any column or channel of matrix E we split channel 
into s different bins and calculate entropy of each bin. 
Finally, the entropy is calculated as follows. 

                                                      H j = - ∑ pi log (pi)  

Where, pi is the probability of bin i, Hj is the entropy of 
channel j. A smaller value of Hj means channel j is less 
important. Channel j can be removed by pruning filter 
corresponding to channel j. If the feature map corresponding 
to filter produces same output for all the input then, this 
feature map and corresponding filter will not contribute to 
end output. We need to prune away such filters. 

II. METHODOLOGY 

To efficiently prove our point, it’s crucial to look at some 

general facts other than the final performance of pruned 
model. To do so we draw an analogy with the products 
available in the market and observe that process of retaining 
few important filters is akin to purchasing few important 
products in the market. While we purchase a product, the 
importance of product is determined by several factors such 
as cost, likeliness, reliability and so on rather than by a 
single factor. Similarly, several characteristics are to be 
given attention while deciding importance of a filter rather 
than score generated by single function. Here, after severe 
experimentation we propose 

2.1 Variant Score function of a filter 

The existing works such as L1 norm consider the sum of 
weights of a filter in determining its importance. But during 
our experimentation we found odd filters whose sum of 
weights is large but actually don’t contribute to end task. 

This might be because weights in filter are larger but similar 
or not properly learnt. These odd filters despite of their large 
L1 norm score produce similar activations to all images. 
Entropy of these filters is low. But when we opt to choose 
L1 norm as criteria we end up retaining these filters instead 
of discarding them. So, some other criteria should be 
helping hand to this L1 score to determine actual importance 
of a filter. Generally, small filters produce small activations 
resulting in small entropy. If the curve between L1 norm and 
entropy is strictly increasing or linear then we would have 
chosen one of these as criteria to rank filters. But 
experimentally we found at certain instances the curve tends 
to be nonlinear. As mentioned above some large filters 
resulted in low entropy as they produced similar activations 
for many images without differentiating them. The vice 
versa is also possible, a high entropy accompanied by weak 

weights in certain filters. But this case is rare to observe. 
However, we propose a medium level ground to balance this 
relation by retaining filters that tend to be good at both L1 
norm and entropy. This strategy of pruning is performed 
layer by layer starting from last layer. Here L is the vector 
containing L1 norm of all filters in the layer. E is the vector 
containing entropy scores of all filters in the layer. Here we 
propose soft-max applied to each filters entropy score to 
relatively compare how important this filters entropy score 
is against other filters entropy scores. Soft-max of a value 
always lie in [0,1]. In below equations j takes values from 1 
to n. 

Score of a filter fi = Soft-max (Li) × soft-max (Ei) 

Soft-max (L i) = (eith filter L1 norm) / (∑ ejth filter L1 norm) 

Soft-max (E i) = (eith filter entropy score) / (∑ ejth filter entropy score)  

Though L1 norm of a filter is high but entropy is relatively 
small then resultant score of a filter is negligible (for 
example o.8 × 0.2 = 0.16) and filter is discarded. If both L1 
norm and entropy of a filter are moderate the score of a filter 
is accepted (for example o.6 × 0.4 = 0.24). If both are high, 
filter is perfect (0.8 × 0.8 = 0.64). This new strategy of 
pruning has produced mean Average precision that is higher 
than pre-existing strategies when 50% of filters are pruned 
away. Mean Average precision is slightly less but 
comparable when 25% of filters are pruned. 

III. EXPERIMENTATION 

In this section, we will show evidences for all our claims. 
We will compare the performance of different pruning 
techniques listed so far and will plug-in better 
communication algorithms on top of faster-RCNN. 

3.1 Pruning Faster RCNN 

Vgg-16 is the base component of faster RCNN model and 
other object detection specifics are built on top of it. We 
have chosen the pascal-VOC 2007 dataset [10] as [4] had 
already experimented with it using random pruning. So, we 
will consider experimenting with same dataset and 
demonstrate how this new strategy of weighted pruning 
slightly increased accuracy compared to other pruning 
methods. We first plugin standard unpruned vgg-16 into 
faster-RCNN and then train it. This model gives us mean 
Average Precision of 0.66. Later after plugging-in weighted 
pruned vgg-16, the mean Average Precision observed is 
0.612. we can take a trained faster RCNN model and prune 
(weighted pruning) it directly. In this case, the no of frames 
per second are increased from 7.5 to 13. There is no 
significant drop in accuracy with this strategy. The accuracy 
obtained is slightly greater than rest of existing individual 
pruning techniques.   
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 Level of pruning 

Heuristics                 25%                       50% 

Weighted pruning     0.646                      0.612                          Faster RCNN   Baseline      Pruning (50%)   

Random                     0.647                    0.600                                mAP                  0.66               0.652 

Mean Activation       0.647                     0.601                                fps                      7.5                13 

Entropy                      0.637                     0.584 

L1 – norm                  0.628                     0.608                            Table 2: Results of Object Detection when  

Sensitivity                  0.636                     0.592                           directly pruning(weighted) a fully tra ined  

Table 1: Results of Object Detection obtained by    Faster-RCNN 
Plugging in different pruned vgg-16 models in to  
Faster RCNN 
 
3.2 Natural Language Processing on top of Faster-
RCNN 

Indeed, our aim is not just to restrict to weighted pruning. 
Designing a system that maps sequential hand gestures to 
words or sentences in real time scenarios and finally spelling 
them out is highly challenging in consideration with speed 
and accuracy. The American sign language dataset consist 
of 29 gestures. Our weight pruned Faster-RCNN is capable 
of detecting hand in an image and classifying it to one of 
these 29 gestures. 26 gestures represent to 26 alphabets A-Z. 
one gesture represent NULL GESTURE to usually confirm 
end of either word or sentence. The other 2 gestures are 
meant for two recommendations that we discuss later. 
Weight pruned and fine-tuned Faster-RCNN achieved a 
descent accuracy on this custom sign language dataset. On 
test set, 90% of gestures are classified correctly. However, 
there are several challenges while pronouncing words or 
statements quickly. Let’s limit our discussion to words and 

further move on to sentences.  
Challenge 1: If user(dumb) wants to spell a word ‘ring’, he 

needs to make sequence of gestures representing 
corresponding letters in word ‘ring’.  Finally, user makes 

null gesture to confirm end of word and spells out using a 
speaker API. We used pyttsx3 to pronounce words. If 
Faster-RCNN incorrectly classifies one of the gestures, then 
it may be pronounced as ‘sing’ rather than ‘ring’. This rate 

of misclassification is to be arrested to the possible extent. 
So, we decided to use a time buffer of 3 seconds to 
recognise a single gesture. Pruned Faster-RCNN detects 13 
frames per second, faster than unpruned Faster-RCNN. This 
results in detection of 39 frames per 3 seconds and makes 
our task easy. In these 39 frames our model is working to 
classify same single gesture. It results in 39 predictions for a 
single gesture in 3 seconds. Picking out the largely 
occurring prediction has arrested misclassification of a 
gesture.  After completion of 3 seconds, notification occurs 
on web cam asking user to enter the next gesture.  
Challenge 2: Another issue to be dealt is quickness in 
spelling a word. While pronouncing a word ‘television’ it 

takes ten time-steps, each time step responsible for 

identifying a single character in the word ‘television’. This 

result in huge time delay. Recommendations come into 
rescue. After making sequence of gestures for sub-string 
‘te’, two words (‘television’ and ‘teeth’) pop up on screen as 

recommendations asking to choose between the two. If user 
continues and make another gesture ‘a’ in addition to ‘te’ 

without choosing any of two recommendations, then 
recommendations r1 and r2 dynamically changes to (‘tear’ 

and ‘teacher’). This style of recommending continues till a 

null gesture or a recommended word is chosen. When a null 
gesture or recommended word is chosen then pyttsx3 
speaker spells the word and clears the screen. Now instead 
of t time steps we produce a word in t/4 or t/8 time-steps, 
reducing delay in time. 
suggesting two random words that start with given sub 
string is not accepted. Generally, if we find patterns in our 
daily life, we end up using hardly same 5000 words daily. In 
similar manner recommendations should work with 
knowledge of frequently used previous words. The system 
uses a SQL database consisting of top 40000 frequent words 
from NLTK brown corpus. Initially frequencies of all words 
are set to zero. When user choose null gesture or r1 or r2, 
the frequency of corresponding word gets incremented.  
System always recommend words that possess high 
frequency in database and that start with given substring. 
After immediate end of present word, we are no more left 
with sub string to make recommendation until the first 
gesture of next word is made. In this gap we can recommend 
a sentence possessing the context of previous word (through 
TD IDF VECTORISER). We have chosen a dataset 
consisting of most widely used 2000 daily life sentences. 
Instead of passing last word as query to TD IDF document 
parser (usually turns to be string searching algorithm) we 
passed last two or three words (tri gram) to retain the actual 
context. For example, if last two words spelled are (‘which’, 

’dress’) the sentence recommendations might be (‘which 

dress is nice among these’, ‘which dress costs least’). The 

algorithms capability steadily increases as user frequently 
use it.  
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FIGURE 1: comparing mean average precision score of directly  Figure 2:  weight pruned Faster-RCNN  
pruned Faster RCNN on pascal-VOC 2007 dataset [10] over       detecting the hand and classifying it as  
different pruning techniques.   Alphabet ‘y’ 
 Alphabet ‘y’ 
we can observe from fig1 that weighted pruning attained a 
mean average precision of 0.610 which tends to be greater 
than remaining pruning techniques. Generally, this helps 
Faster RCNN to increase no of frames per second and 
decrease computation cost by 50%. 

 

Figure 3: model recognises gesture1 as alphabet ‘r’ and 

recommends words such as ‘right’ and ‘rather’. User can 

choose any of the recommendations as per his need with 
ease of 1 time-step. If user wants to spell different words 
such as ‘route’. Then user can show second gesture to 

system. 

 

Figure 4: If user just spelled word ‘right’ using pyttsx3 (text 

to speech converter). The system recommends sentences 
(such as ‘call your parents right now’) that user would like 

to spell before entering first gesture of second word. But we 
used bigram (last 2 words for sentence recommendations). 

 

IV. CONCLUSION 

with this application specially disabled (dumb) can speak 
sentences and words in public communities with ease and 
quickness. The model built on weight pruned faster RCNN 
and simple NLP algorithms can be easily deployed on 
smaller gadgets. It is highly scalable and flexible. Being run 
on computer vision techniques, this also benefits users from 
wearing overhead sensors. Unlike always showing gestures 
to mobile and speak, a similar hardware like watch, that can 
be attached to hand can be built. 
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