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 
Abstract: Feature selection is a powerful tool to identify the 

important characteristics of data for prediction. Feature selection, 
therefore, can be a tool for avoiding overfitting, improving 
prediction accuracy and reducing execution time. The 
applications of feature selection procedures are particularly 
important in Support vector machines, which is used for 
prediction in large datasets. The larger the dataset, the more 
computationally exhaustive and challenging it is to build a 
predictive model using the support vector classifier. This paper 
investigates how the feature selection approach based on the 
analysis of variance (ANOVA) can be optimized for Support 
Vector Machines (SVMs) to improve its execution time and 
accuracy. We introduce new conditions on the SVMs prior to 
running the ANOVA to optimize the performance of the support 
vector classifier. We also establish the bootstrap procedure as 
alternative to cross validation to perform model selection. We run 
our experiments using popular datasets and compare our results 
to existing modifications of SVMs with feature selection 
procedure. We propose a number of ANOVA-SVM modifications 
which are simple to perform, while at the same time, boost 
significantly the accuracy and computing time of the SVMs in 
comparison to existing methods like the Mixed Integer Linear 
Feature Selection approach. 

 
Keywords: support vector machines, ANOVA, bootstrapping, 

PCA transformation, feature selection 

I. INTRODUCTION 

 
The support Vector Machines (SVMs) was first introduced 

by Vapnik and Lerner [27] and further developed by Vapnik 
and Chervonenski [26]. The baseline version of SVM was 
developed by Cortes and Vapnik [5] and implemented in the 
LIBSVM library [4]. Since then, many modifications of the 
SVMs have been used to improve its performance. Big part of 
them is widely applied in biology [10], [16] and [17], due to 
their advantages summarized by Vapnik [27] and Yu [30]. 
The aim of our paper is to propose optimized versions of the 
SVMs based on the analysis of variance that can be applied to 
various types of data. 

Hsu and Lin [6] proposed two versions of the SVMs for 
multiclass problems as the support vector classifier was 
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originally developed for binary classification. They 
compared their results to similar methods described in 
Weston’s paper [28]. Current versions of SVMs can solve 
multiclass optimization problems, some of which are based 
on feature selection methods [7]. Bradley [2] discussed the 
advantages of feature selection in the support vector 
classifier. Weston summarized popular feature selection 
methods for SVMs in [29]. 

Mangasarian [14] proposed a feature selection approach 
for nonlinear kernel SVMs. In the same year, Uncu [24] 
combined wrapper methods and filters to identify the relevant 
features in SVMs. In 2009 Maldonado [13] proposed a novel 
wrapper SVMs. The mechanism behind wrapper methods 
and filters is similar to ranking the importance of features via 
ANOVA [1], [30]. Reduced support vector machines is 
another version based on feature selection [9], [11]. It can be 
combined with clustering for improved performance [8]. 
Feature selection with L1-norm is another method for 
minimizing the dimension of features for SVMs [15], [19] 
and [20] similar to the least shrinkage operator. Neumann 
[18] and Rakotomamonjy [21] proposed modifications of 
SVMs based on regularisation and embedded nonlinear 
feature selection.  Ngyuen [20] proposed a method for 
optimal feature selection in the SVMs. The mixed linear 
approach is also applied as a tool for feature selection in the 
SVMs [31]. Among its benefits are increased accuracy and 
stable choice of features compared to the ordinary SVMs 
[12]. A recent example is the research article of Maldonado 
[12], in which feature selection methods for the SVMs are 
extended using the Mixed Integer Linear Approach. 

He based his paper on the l1-SVM formulation in [2] and 
the LP-SVM method in [31]. He modified the two methods to 
be applicable to the Mixed-Integer Programming framework. 
Maldonado proposed two modified versions of the l1-SVM 
formulation and LP-SVM method, which allow performing 
feature selection in one step, better accuracy compared to 
ranking methods at the cost of reasonable computing time. 
He compared his results to ranking feature selection methods 
and highlighted the practical advantages of his modifications. 
He performed his experiments in Matlab using a range of 
freely available datasets, including a dataset where the rule n 
> p was broken showing that his versions can provide stable 
practical solutions despite the irregular structure of data. 

  We further examine the feature selection problem in the 
context of Support vector machines, particularly how to 
select the optimal number of features to improve the accuracy 
and time of the model. We summarize our key findings on the 
topic by proposing a number of modifications of the ANOVA 
method for improving the performance of the SVMs. 
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 We show that our proposed versions of ranking feature 
selection for SVMs can improve accuracy and computing 
time obtained by the Mixed Integer Linear Approach in [12]. 
Section 2 describes our modifications. Sections 3 reveals and 
discusses our results. Section 4 concludes. 

II.  METHODOLOGY 

A. The classical Support vector machines 

First, we introduce the mechanism of the support vector 
classifier. Many software packages use the LIBSVM library 
[4] that was developed based on Vapnik’s original paper [5].  
The standard Support vector machines that is based on the 
LIBSVM library can be fitted using the scikitlearn.svm.SVC 
module in Python [22]. The mechanism behind the C-Support 
vector is given in [4] and described by eq.1: 

   
 

 
     

 
     

 

   

                                               

Subject to: 
 
    

                                                      (2) 
 
             
                   
In the standard SVMs method xij denotes the matrix that 
contains the input training data. The matrix consists of xi* 
observations, i=1,..l, and x*j independent variables, j=1,..p. 
The parameter φ(xi*) maps the kernel function applied to the 
training space of xi*, observations. The constant C, C > 0, is 
the regularization parameter that tunes the soft margin and 
controls the shrinking of SVM coefficients. The parameter 

ksi   accounts for the error term. The weight vector w 
contains the weight of each variable as a result of the C 
optimization [5]. The routine procedure for solving the 
optimization problem in eq.1 is to standardize the input data 
by using eq. 3 and fit the Support vector machines: 
 

    
     

 
                                                                                  

Where µ and σ denote the mean value and the standard 

deviation of the variable. The standard SVMs in eq. 1 is 
subject to eq. 2 and 3. In the standard SVM procedure, the 
value of the constant C is selected using cross validation [5]. 
The value of C that minimizes eq. 1 is selected and then used 
to fit the support vector classifier on dataset that is split into 
training and test set. 
 
We present the equation of normalization (eq. 4) as we will 
use it in our modifications: 
 

    
             

                  
                                                     

 
In the next subsections we present our optimized versions of 
the C-optimization in the support vector classifier. 

B.  Modification 1: ANOVA-CV-L-SVM  

1 We first standardize (eq.3) our input data by using the 
StandardScaler() function in Python. The 

standardization is proposed in [23]. This procedure 
removes the unit from the input data. 

2 The new step that we introduce is normalization (eq.4) 
of the dataset so that all features have values between 0 
and 1 using the MinMaxScaler() function in 
scikitlearn. In this way, we remove negative values 
from the standardized data. 

3 We then fix C in eq. 1 to 1 instead of selecting it using 
cross validation as in [5]. Fixing C to 1 balances the 
trade-off between small errors and large margin. 

4 We split the dataset into training and test set using the 
built-in tenfold cross validation function in scikit learn 
as described in (Stiston et al., 1997). The ratio we use 
is 70:30. We use this procedure to perform model 
selection. 

5 We run the C- SVM classifier described in eq. 1 using 
the linear kernel described in [5]. In Python we used 
the function sklearn.svm.SVC. The input data are now 
subject to eq. 2, 3 and 4. 

6  We fit the SVMs (eq. 1) subject to eq. 2, 3 and 4 for 
each percentile of features and keep as many features 
as needed to achieve the highest accuracy of the model 
based on the analysis of variance. We fit the 
ANOVA-SVM using the functions SelectPercentile, 
chi2 for the ANOVA and sklearn.svm.SVC for the 
SVMs. 

7 We calculate accuracy, AUC score and computing 
time (CPU). We call the linear version of our baseline 
algorithm the ANOVA-CV-L-SVM. 

C. Modification 2: ANOVA-Bootstrap-SVM  

1 We first standardize (eq.3) our input data by using the 
StandardScaler() function  similar to the previous 
algorithm. 

2 We fix C=1. 

3 We then normalize (eq.4) the dataset so that all 
features have values between 0 and 1 using the 
MinMaxScaler() function in scikitlearn. Unlike the 
standard SVM procedure (eq. 1) subject to eq. 2 and 3, 
our version is subject eq. 2,3 and 4. 

4 Unlike the standard SVM algorithm, we split the 
transformed dataset into training and test set using the 
bootstrap procedure described in [3]. The ratio we use 
is 70:30. In this step, we changed the classic model 
selection procedure by introducing the bootstrap. 

5 For each percentile of features we then apply the C- 
SVM classifier described in eq. 1 subject to eq. 2, 3 
and 4 with a linear kernel. We fit the ANOVA-SVM 
using the functions SelectPercentile, chi2 for the 
ANOVA and sklearn.svm.SVC for the SVMs. 

6 We select the set of variables that produce the highest 
accuracy. We call the algorithm the 
ANOVA-BOOT-L-SVM. 

 
 

 ij
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7  We calculate the accuracy, AUC score and computing 
time (CPU) for the two modifications and compare our 
results to other SVM modifications. 

D. Modification 3: ANOVA-PCA-Bootstrap-SVM  

1 Like in previous algorithms, we first standardize (eq.3) 
our input data by using the StandardScaler() function . 

2 A new transformation we apply on the standardized data 
is the PCA transformation [32] using the sklearn 
decomposition.PCA module. After the transformation, 
the size of the feature space decreases to p-1.  

3 We normalize (eq. 4) the transformed dataset so that all 
features have values between 0. Normalization is 
performed to remove negative values from the 
transformed dataset. 

4 After we prepare the dataset, we split the dataset into 
training and test set using the bootstrap procedure 
described in [3]. For each percentile of features we solve 
the C- SVM optimization problem described in eq. 1.  
subject to the constraints defined in eq.2, the PCA 
transformation, eq. 3 and 4.  We use a linear kernel to fit 
the model. We select the set of variables that produce the 
highest accuracy. We do that by using the functions 
SelectPercentile, chi2 for the ANOVA and 
sklearn.svm.SVC for the SVMs. 

5 We call this algorithm the 
ANOVA-PCA-BOOT-L-SVM.   

6 We calculate the accuracy, AUC score and computing 
time (CPU). We then compare our results to those 
described in [12] and the standard SVM.  

III. RESULTS AND DISCUSSION 

A. Datasets 

We tested the performance of our algorithms on datasets that 
were used in [12], particularly breast cancer, Australia credit 
and pima diabetes datasets. All of them can be downloaded 
from the UCI Repository. We do not apply any prior 
transformations to data other than the ones described in the 
previous section.  Table 1 presents our data: 

Table I: Data sources 

Dataset 

Number of 
observations 
(l) 

Number 
of 
features 
(p) Source 

Wisconsin breast 
cancer 569 30 [33] 

Australian credit 
approval 690 14 [34] 

PIMA diabetis 
dataset 768 8 [35] 

 

B. Empirical results 

Maldonado [12] proposed new versions of the Mixed 
integer linear approach for feature selection in Support vector 

machines that chose the optimal number of features for 
improving the accuracy of SVM. We compare our results to 
his. Table 2 makes comparison in terms of accuracy (ACC), 
AUC scores (AUC) and number of features selected (k). The 
results marked by asterisks can be reviewed in [12]. The rest 
of the table presents the performance of our modifications 
presented in the Methodology section and the classical SVM 
(eq. 1 subject to eq. 2 and 3). To find the value of C in the 
classical SVM, we used two grids of values for C: values 
between 0.00001 and 10 in the first grid and between 0.00001 
and 100 in the second grid. We performed the model 
selection in the classical version of SVM using tenfold cross 
validation.  Table 2 shows the results. 

Table 2 shows that Maldonado’s experiments resulted in 
very high accuracy of SVMs on the three dataset. He 
achieved best accuracy for the Australia credit dataset equal 
to 85.7%, AUC score 86.3% with only ten of fourteen 
variables. The ANOVA-CV-L-SVM model provides the 
lowest accuracy of all modifications (84.8%), while the 
bootstrapped version resulted in higher accuracy (86.1%) 
than all other modifications. The best performance of the 
SVMs we achieved was through the 
ANOVA-PCA-BOOT-SVM version (87.8% accuracy and 
91.6% AUC score compared to 85.7% ACC and 86.3% AUC 
in MILP2). Our modification improved both the accuracy and 
the AUC score of SVM using only four of fourteen input 
variables. Table 3 shows that Maldonado’s MILP2 method 

took approximately 0.3 seconds to run. In contrast, the 
ANOVA-PCA-BOOT-SVM took only 0.05 seconds to run. 
Our modification provided faster computing time, improved 
accuracy and AUC score due to decreased number of features 
that contain the most important characteristics of the 
Australia credit dataset. 

Our modified ANOVA algorithms improved the 
classification performance on the PIMA dataset as well. The 
mixed linear integer approach (MILP2) reached maximum 
accuracy of 78%, AUC score 73.4 for 0.20s and 0.30s 
respectively (Table 3 - MILP2 NFS and MILP FS). We 
improved the SVMs’ performance using the 
ANOVA-BOOT-SVM algorithm. This algorithm reached 
79.7% accuracy and 82.2 AUC score in 0.15s.  The 
ANOVA-BOOT-SVM algorithm outperformed 
Maldonado’s SVM versions using only seven features in 

contrast to eight in his approach (tables 2 and 3). 
The breast cancer dataset also provided similar results. The 

maximum accuracy we achieved via the 
ANOVA-CV-L-SVM is 97.8% compared to 98.1% via the 
MILP1 approach [12]. We achieved accuracy very close to 
Maldonado’s approach but at a higher speed (0.10s compared 
to 0.20s in his case). Provided that the difference between the 
two approaches is small (0.3 p.p.) and the accuracy in both 
cases is higher than 97%, we consider the MILP1 algorithm 
and the ANOVA-CV-L-SVM algorithm to yield similar 
results. The ANOVA-CV-L-SVM modification, however, 
was faster than the MILP1 method. Our finding suggests that 
we would consider the ANOVA-CV-L-SVM as a better 
approach to fit SVM as it provided accuracy high enough and 
faster calculations. 
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 A key reason for the behavior of our model is the small 
number of features. The ANOVA-CV-L-SVM used only 
twenty-one as compared to twenty-six in the MILP1 method.  

 
Note that the accuracy in the MILP1 method of 98.1% may 

be as a result of using too many variables. We   decreased the 

number of features in the model by three and the accuracy 
falls only by 0.3p.p., which is negligible. This is another 
reason why we consider our accuracy of 97.8% robust. Like 
in the previous datasets, the computational advantage of our 
algorithm is stressed. 

 
Table- II: Best accuracy and AUC, in percentage, and number of selected features (k) for AUS, WBC, and PIMA 

datasets. 

 Australia Credit Breast Cancer PIMA  

 ACC AUC k ACC AUC k ACC AUC k 

l2-SVM* 85.7 86.3 14 97.9 97.3 30 77.9 73.3 8 

LP-SVM* 85.7 86.3 14 97.2 96.5 30 77.9 73.3 8 

l1-SVM* 85.5 86.2 12 97.5 97.2 10 77.9 73.3 8 

Fisher+ SVM* 85.5 86.2 2 97.9 97.3 20 77.5 72.4 7 

RFE-SVM* 85.5 86.2 2 97.9 97.3 23 77.1 71.8 3 

l0-SVM* 85.5 86.2 2 97.9 97.3 16 77 71.8 5 

MILP1* 85.5 86.2 2 98.1 97.7 26 77.9 73.3 8 

MILP2* 85.7 86.3 10 97.9 97.3 17 78 73.4 8 

ANOVA-CV-L-SVM 84.8  90.8  1 97.8  99.5 21 78.1  83.0  8 

ANOVA-Boot-SVM 86.1  92.2  6 97.3  99.1  24 79.7  82.2  7 

ANOVA-PCA-Boot-SVM 87.8  91.6  4 96.0  99.2  27 78.2  82.8  8 
Classical SVM with linear 
kernel C=10 85.51 92.9 14 97.01 99.98 30 76.95 84.59 8 
Classical SVM with linear 
kernel C=100 85.5 92.84 14 96.13 99.99 30 76.95 84.62 8 

Source: * [12], authors’ calculations 
 

Table III a) Comparison of computing time – 
Maldonado’s methods: 

 AUS WBC PIMA 

l2-SVM* 0.50  0.20  0.30  

LP-SVM* 0.20  0.10  0.10  

MILP1-NFS* 0.20  0.20  0.20  

MILP2-NFS* 0.20  0.30  0.20  

Fisher + SVM* 0.50  0.20  0.40  

l1-SVM* 0.40  0.40  0.30  

RFE-SVM* 0.80  0.40  0.60  

l0-SVM* 0.80  0.50  1.30  

MILP1-FS* 0.20  0.20  0.20  

MILP2-FS* 0.30  0.20  0.30  
Source: [12] 

 
Table III b) Comparison of computing time – Classical 

SVM and modifications: 

 AUS WBC PIMA 

ANOVA-CV-L-SVM 0.04  0.04  0.10  

ANOVA-Bootstrap-SVM 0.09  0.05  0.15  
ANOVA-PCA-Bootstrap-SV
M 0.05  0.07  0.08  

Classical SVM with linear 
kernel C=10 4.81 0.24 2.21 

Classical SVM with linear 
kernel C=100 

41.3
0 1.25  14.34  

Source: authors’ calculations 
 
   We also calculated the value of the target function (eq. 1) 
for our proposed versions of SVMs and compared it to the 
value resulting from the standard SVM. We were interested 
to discover whether the value of the target function would be 
the smallest for the best model. We calculated the value of the 
target function only for the model that we identified as the 
best for a dataset. Table 4 presents the results.  
 
Table IV: Value of target function for AUS, WBC, and 

PIMA datasets 

 WBC AUS PIMA 
ANOVA-CV-L-SV
M 3.81  1.00  3.98  
ANOVA-Bootstrap-
SVM 3.93  4.60  3.90  
ANOVA-PCA-Boots
trap-SVM 5.31  2.95  4.29  

Classic SVM with 
linear kernel C=10 17.58 12.13 11.14 
Classic SVM with 
linear kernel C=1000 122.74 102.18 101.14 

Source: authors’ calculations 
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Table 4 shows that in the PIMA dataset, the 
ANOVA-BOOTSTRAP-SVM provided the best accuracy 
and it had the smallest value of the target function - 3.90. The 
same is the case with the breast cancer database. The method 
that provided the best accuracy for the Australia dataset is the 
ANOVA-PCA-BOOTSTRAP-SVM. Table 3 shows that the 
value of the target function for this modification is 2.95.  

The value for the ANOVA-CV-L-SVM is one and it is the 
smallest. We can explain this outlier with the fact that in this 
case the target value is equal to the number of chosen features 
(one), which are not optimal for fitting SVMs. We confirm 
that finding by looking at the value of the weight vector w 
used in eq.3. The weight of that one variable chosen is zero, 
which means that the value of the target function in this case 
shows that only the intercept is fitted. As a result, this value 
of the target function reflects SVM model with only 1 
significant variable. As this is a special case, we consider the 
ANOVA-PCA-BOOTSTRAP-SVM to have the smallest 
value of the target function.  The analysis of table 3 validates 
our experiments by confirming that the lowest value of the 
target function when the number of features chosen is not 
one, corresponds to the best accuracy. Another important 
finding is that the lowest value of the target function in 
several ANOVA modifications for SVM corresponds to the 
smallest number of features chosen. Another finding we 
observe in our experiments is that our algorithms resulted not 
only in the highest accuracy at a reduced computing time, but 
also in the smallest number of optimal features compared to 
Maldonado’s best model for each dataset.  

A key problem in our experiments is how to choose the 
number of features in SVMs so that we affect the accuracy 
and the computing time of the model. A key finding from our 
experiments is that the fewer the features in the model, the 
faster is the computing time. Maldonado chooses ten features 
out of fourteen to fit MILP2 SVM on the Australia dataset, 
while we use only ten features. As a result, our 
ANOVA-PCA-BOOTSTRAP-SVM is faster. Similar is the 
case with the other two datasets - Maldonado [12] achieved 
highest performance on the breast cancer dataset using 
twenty-four features, while we used twenty-one and achieved 
robust accuracy of 97.8%. In the PIMA dataset he used all 
eight features, while we used only ten and our model shows 
better performance as discussed before. 

Another important finding is that the classical SVM 
provided mediocre results on all three datasets compared to 
our suggestions.  The aim of the standard SVM is to find the 
optimal value of the tuning parameter C so that the value of 
the target function in eq. 3 is minimized subject to eq. 2 and 3. 
This finding is confirmed in table 4 where we see the value of 
the target function defined in eq.3. The classical SVM did not 
minimize the target function compared to the other 
algorithms. Our modifications resulted in smaller value of the 
target function and the best modification we selected 
minimized it. To fit the classical SVM we used two grids of 
values for C: [0.00001:10] and [0.00001:100]. The procedure 
in our case outlined C=10 and C=100 as the best parameters 
to fit the classical version. However, the standard model’s 
performance was worse than our modifications. The classical 
SVM was much slower and the accuracy was worse than our 
algorithms where we kept C = 1. Another disadvantage of the 
standard SVM is that there is not a standardized procedure for 

setting the grid of tuning parameters. The resulting output of 
the SVM becomes sensitive to the values in the grid. We 
solve this problem by fixing C=1 as it balances the trade-off 
between high margin and small error terms [22]. The overall 
performance of our algorithms was better than the standard 
SVM as we introduced new constraints on the input data, 
used different model selection procedures and fixed C to 
identify the important variables. This approach reduced the 
variables dimension and accelerated the computing time of 
the model. 

In our modifications, we used cross validation similarly to 
Maldonado [12] but also introduced the bootstrap as a model 
selection method. The bootstrap model selection method 
introduced in the ANOVA-BOOT-SVM and 
ANOVA-PCA-BOOT-SVM  splits the training and test set 
randomly but unlike cross validation, it uses a portion of the 
training and test data to perform model selection and allows 
for repetition [3]. As a result, the model selection can be 
performed on smaller dataset than in cross validation, which 
makes the operation faster. The bootstrap combined with the 
ANOVA method allows for fitting SVM faster, while the 
ANOVA selects the best number of features based on the 
smallest variance. Our ANOVA-CV-L-SVM also is an 
appropriate method for fitting SVM. Its advantage lies in 
avoiding overfitting, which combined with the analysis of 
variance method (ANOVA) chooses the optimal number of 
features that lowers the computing time and provides robust 
accuracy that is not inflated by the number of features. 

C. Discussion 

In this paper, we proposed several upgraded versions of the 
ANOVA-SVM that contribute to academic literature as they 
optimize the performance of the support vector machines. 
Among the advantages of our algorithms are simplicity, 
improved accuracy, reduced number of features and 
independence of the results from the value of the 
optimization as we keep it fixed to 1. In each of our 
algorithms we do not have to find the best value for C, so our 
results do not depend on C on each run. An important note 
should be made, however, that we fixed the value of C to 1 as 
this value balances the trade-off between high margin and 
small error terms. We did not experiment with values 
different from 1, so the execution time and accuracy of our 
proposed algorithms may differ in this case. Another 
important note is that Maldonado performed his research in 
Matlab, while we worked in Python. As the cores of our and 
Maldonado’s algorithms are different, we believe the 

software environment does not play a key role in the 
execution time. Important role plays the algorithm that is 
executed. Therefore, we consider our and his results 
comparable from algorithmic point of view. 

IV. CONCLUSION 

In this paper, we showed that the performance of the 
ANOVA procedure for the support vector classifier depends 
very much on the conditions imposed on the optimization 
problem that the support vector machines solves. Imposing 
well-defined conditions can significantly boost execution 
time and improve the accuracy of the model.  
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 Our findings suggest that the performance of the 
ANOVA-SVMs can further be boosted by using the 
bootstrap procedure for model selection instead of the tenfold 
cross validation. As a result, we enrich academic literature in 
the field by introducing SVM modified algorithms with 
practical advantages. 
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