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Abstract: We introduce the definitions of fuzzy positive
implicative WIi-ideal and fuzzy associative WI-ideal of lattice
Wajsberg algebra. Further, we prove every fuzzy positive
implicative WIi-ideal of lattice Wajsberg algebra is a fuzzy
WI-ideal. Also, we discuss the relationship between fuzzy positive
implicative WI-ideal and level subsets. Moreover, we give the
relationship of fuzzy associative WI-ideal with fuzzy Wl-ideal in
lattice Wajsberg algebra. Finally, we study some characterizations
of fuzzy associative WI-ideal.
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l. INTRODUCTION

The term fuzzy logic was introduced by Zadeh[9] in 1965.
Fuzzy logic has been applied to many fields, from control
theory to artificial intelligence. The concept of Wajsherg
algebra was first proposed by MordchajWajsberg[8]in 1935,
and analyzed by Font, Rodriguez, and Torreng[1] in 1984.
They [2] dso introduced a lattice structure of Wagjsberg
algebra. The authors [2] introduced the notion of WI-ideal of
lattice Wajsberg agebra and discussed some related
properties. Further, the authors [3], [4], [5], [6], “to be
published”’[7]introduced the notions of fuzzy W -ideal,

normal fuzzy Wi-ideal, implicative Wi-ideal, fuzzy
implicative Wi-ideal, an anti fuzzy W-ideal ,positive
implicative W-ideal, associative WIl-ideal of lattice

Wagjshberg
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algebras and aso investigated their properties with suitable
illustrations.
In this paper, we introduce the definitions of fuzzy positive
implicative Wi-ideal and fuzzy associative WI-ideal of lattice
Wajsberg algebra. Also, we discuss the relationship between
fuzzy positive implicative WI-ideal and fuzzy W-ideal.
Further, we prove that every fuzzy associative WI-ideal of
lattice Wajsherg algebra with respect to O isafuzzy Wi-ideal.
Finaly, we give some of the characterizations of fuzzy
associative WI-ideal.

. PRELIMINARIES
We recollect basic definitions and their properties which are
useful to develop our main results.
Definition 2.1[1]. Let (A, —, *, 1) bean algebrawith binary
operation ‘ — ’and a quasi complement ‘*’ is said to be
Wagjsberg algebraif it satisfies the following,
i) 1-x=ux
(i) k=>y)>y=G-x)->x
(i) @->» > (-2 >@-2)=1
(iv) (x* = y") = (y = x) =1fordl x,y,z € A.
Proposition 2.2[1]. A Wajsherg algebra (A, —, *, 1)
satisfies the following axiomsfor al x,y, z € A4,
i) x->x=1;
@) f x-=y)=(Q—-=x)=1thenx =y;
@iy f(x-»>y)=@-2)=1then x >z =1;
(iv) (x> O-n)=1
V) x-MN->(z-0)->E-y)=1
(Vi) x =>1=1;
(vii) (x*)* = x;
Vi (x> y) =y > x;
(ixX) x> (y-2)=y->(x-2);
X)x->0=x—->1"= x".
Definition 2.3[1]. A Wajsberg algebra (A, —,*, 1) issaidto
be a lattice Wajsherg algebra if it satisfies the following

axioms,
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(i) The partial ordering < <’ on a lattice Wajsberg algebra A,
suchthatx < yifandonlyif x -y =1;

(i) xAy=(x"=y)=>y)5

(i) xvy =((x »y) » y)foradlx,y € A.

Note. From definition 2.3 an algebra (A, v, A, *,0,1) isa

lattice Wajsherg algebra with lower bound zero and upper

bound one.

Definition 2.4[2].A nonempty subset | of lattice Wajsherg

algebraAissaid to be WI-ideal of lattice Wajsberg algebra A.

If it satisfies,

i) 0€er

(i) x->y)'el andye limplyx € Iforalx,y € A.

Definition 2.5[7]. Let | be a non-empty subset of lattice

Wajsberg algebra A. | is said to be a positive implicative

W-ideal of A, if it satisfiesfor al x,y,z € A,

i)y 0€er

(i) xeland((y = (z—=y))" = x)" € limplyy € I.

Definition 2.6[7]. A non-empty subset | of A is caled an

associative WI-ideal of A with respect to x, where x is afixed

element of A, if it satisfiesfor al x,y,z € A,

i)y 0€el

(i) (z-y)»x)€el ad(y—->x) € limplyze [

and x # 1.

Definition2.7[9]. Let Abeaset. A function u: A - [0,1]is

said to be a fuzzy subset on A, for each x € A the value of

1 (x) denotes a degree of membership of xin p.

Definition 2.8[9]. Let u be afuzzy subset in aset A. Then the

set {u; = x € A/u(x) = t}fort € [0, 1]iscalled level subset

ofu.

Definition 2.9[3]. Let A be a lattice Wajsberg algebra. A

fuzzy subset u of A is said to be a fuzzy Wi-ideal of lattice

Wajsherg agebraAif,

() u(0) = pux);

(i) ux) =2min{ulx - y)*, uly) }foralx,yeA.

Proposition 2.10[7]. Let M and N be two W -ideals of lattice

Wajsberg algebra A with M <N . If M is a positive

implicative Wi-ideal of AthensoisN.

1. MAINRESULTS
3.1. Fuzzy Positive Implicative WI-ideal
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We introduce the concept of fuzzy positive implicative
WI-ideal of lattice Wajsherg algebra A and study some of its
properties.

Definition 3.1.1. A fuzzy subset pof |attice Wajsherg al gebra
A is called a fuzzy positive implicative WI-ideal of A if for
alx,y,zeA,

(i) u(0) = pulx);

(i) u@) =2min{u((y - (z > y))" > 0", u0)}

Example 3.1.2. A set4 ={0, i, ], k, 1} with partia ordering as
in the ‘Fig.1’. Defining a binary operation ‘ — ’and a quasi
complement‘*’on A asgivenin tables| and II.

Tablel: Complement Tablell: Implication

1 X | X > |0]i|] k|1
k 0 1 O (111|111
If i K [ k{1]1]|1]|1
g 1 AILNEEE
60 Kk i k [ij|1]1]1

1] 0 1 ]0|i|j k|1
Fig. 1

L attice diagram

Define A and v on A asfollows:
xAy=(x"=y)=y);xvy=((x~-y) - y)for al
x,y €A.

Then, (4, v, A,—, 0,1) is a lattice Wajsherg algebra A
fuzzy subsetu ofA is defined by,

()_{.68 whenx =0 forallx € A
HXI=1 .21 when x = {i,j, k,1} forall x € A

Then, a fuzzy subset u is a fuzzy positive implicative
W -ideal of lattice Wajsherg algebra A.

Proposition 3.1.3. Every fuzzy positive implicative W -ideal
of lattice Wajsberg algebra A isafuzzy Wi-ideal of A.

Proof. Let u be afuzzy positive implicative W -ideal of A,
then from (ii) of definition 3.1.1 we have

u(@) = minfu(((y » z->y))" > x)),ulx)} for al
X,y,zZ € A. 3.1.1)
Takingx =y, y=xand z =xin(3.1.1)

We obtain

p@) zmin{u (x = (x >0 > y))u ()}
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=min{u (((x > D" - ") " u®)}

=min {u (((x > 0)" - y)") ", u()}

= min{u((x - )", 1)},
Thus, we have u(x) = min{u((x - ), u@y)}, and
1(0) = u(x)[From (i) of definition 3.1.1]
Hence, u isafuzzy Wi-ideal of A.m
Note. The converse of the above proposition may not be true.
Proposition 3.1.4. Let u be a fuzzy implicative WI-ideal of
lattice Wajsherg algebra A. u is a fuzzy positive implicative
W-ideal of Aif and only if u(x) = u(((x - (y = x)*)")for
al x,y € A.
Proof. Let u be a fuzzy positive implicative WI-ideal of A,
then from (ii) of definition 3.1.1 we have
for al
(3.1.2)

1) = min {u(((y » (z > ¥))" - 2)7),u(x) }

x,y,Z € A.

Substituting x = 0,y = x, and z =y in(3.1.2)

Weobtain u(x) = min {u(((x » (y = x)")" > 0)", u(0)}
= minfu((x > (v = 1)), 1(0)}
=u((x=> -2

Conversely, suppose u isafuzzy Wi-ideal and it satisfies the

inequality,

ux) Zzpu((x» (y-»x))") fordl x,y,ze A

Put x = y in (3.1.3), then, we have

(3.1.3)

) = u(ly - z->y))7)
> min {u(((y = (z > y))" = x)"), u(x)}.
Thus, we have
p() = min{u(((y = (z > y)")" = x)"), u(x)},
andu(0) = u(x)[From (i) of definition 3.1.1]

Hence, u isafuzzy positiveimplicative Wi-ideal of A.m

Proposition 3.1.5. If u is a fuzzy positive implicative
W-ideal  of Wajsherg agebra A
I ={x € A/u(x) =u(0)}is apositive implicative W-idea
of A.

lattice then,

Proof. Let u be a fuzzy positive implicative W -ideal of A
and! = {x € A/u(x) = pu(0)}

Obviously, 0 € A. Let (y > (z-y) ) »x))€ElLx€EI
fordl x,y,z € A.

Then, we have u(((y - (z - y)*)* - x)*) = u(0) and

u(x) = p(0) (314
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Since u is a fuzzy postive implicative W-ideal, we
haveu(y) = min{u(((y = (z > y)")" = 1)), u(x)}

[From (ii) of definition 3.1.1]
[From 3.1.4]

[From (i) of definition 3.1.1]

= u(0)

and u(0) = u(y)
Then, we get u(y) = 1(0)
Thus, y € I it followsthat | isapositive implicative WI-ideal
of Am
Proposition 3.1.6. Let u be a fuzzy subset of lattice
Wajsberg algebra A. p is a fuzzy positive implicative
W -ideal of Aif and only if u (a, B) isapositive implicative
W -ideal of A, whenu (a, B) #+ @;a,B € [0, 1].
Proof. Let u be a fuzzy positive implicative Wi-ideal of A
a, B €[0,1] that wu(a,B) = 0. Clearly
0 € u(a, p).
Let (y = (z > ¥))" = x)" € ula, B),x € p(a, B) for all
x,y,z € A.Then, we have

u((y = -y » 0" 2 [a,f], u(x) = [a,B].
It follows that,
u(@) = min{u(((y > (2 > )" = 0)), w0} = [a,B].
Thus, y € ula, B]. Hence, we have ula, B] is a positive
implicative Wi-ideal of A.
Conversely,

and such

suppose that u(a,B) # 0 is a podtive
implicative WI-ideal of A, where «a,f € [0,1]. For any x €
A, and x € p,(x), it follows that u,(x) is a postive
implicativeWl -ideal of A.

Thus, 0 € p,(x). That isu(0) = u(x) for al x,y,z € A.

Let [a, ] = min{u(((y > (z > ¥))" > x)")", u()}, it
followsthat u(a, B) isapositive implicative Wl-ideal and
(> EZ->¥)) ~»x))" €pla, Bl and x € pla,pl.
Thisimpliesthat y € ula, 8]. So,

1) = [a, Bl = min {u(((y > (z = y))" = x)7), u(x)}
Hence, we get u is a fuzzy positive implicative WI-ideal of
Anm
Corollary 3.1.7. A fuzzy subsetuof lattice Wajsberg algebra
Aisafuzzy positive implicative Wi-ideal of A if and only if
U, isapositiveimplicative Wi-ideal of A, whenu, # @, «a €
[0,1].

Proposition 3.1.8. Let M and N be implicative W -ideal s of
lattice Wajsberg algebra A,
such that M c N. If u isafuzzy
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positive implicative W-ideal of M. Then so N.
Proof. Let M and N be implicative WI-ideals of lattice
Wajsherg algebra A. Let u be afuzzy positive implicative
W-ideal of M. Since M € N, py(x) < uy(x) for al x € A.
Then, clearly M, < N, for every a € [0,1]. If u,, isafuzzy
positive implicative WI-ideal of A. Hence, we get M, is a
positive implicative WI-ideal of A.  [From corollary 3.1.7]
Then, N, isapositiveimplicative Wi-ideal of A.

[From Proposition 2.10]
Thus, u, isfuzzy positiveimplicative WI-ideal. Hence, pisa
fuzzy positive implicative Wi-ideal of N. m
3.2. Fuzzy Associative WI-ideal
We introduce an idea of fuzzy associative WI-ideal of lattice
Wajsberg algebra Aand examine its properties,
Definition 3.2.1.A fuzzy subset uof lattice Wajsberg algebra
Ais said to be a fuzzy associative WI-ideal of A with respect
to X, wherex isafixed element of A, if it satisfies,
(i) u(0) = p(x);
(i) @ =min{u((z > y)" - 0" u((y » 2}
fordl x,y,z € A.
A fuzzy associative WI-ideal with respect to all x # 1 is
caled a fuzzy associative WI-ideal. Fuzzy associative
WI-ideal with respect to 1 is constant.
Example 3.2.2.A set A ={0, d, e, 1} with partial ordering as

in “Fig. 2”. Define ‘*’ and *—’ on A as given in tables 11

and IV.
Tablelll: Complement TablelV: Implication
. X1 x -

O|d|e|1l

K </ ‘ ol 1 o|1[1]1[1
0‘F d| e dje|1]|1|1

e| d eljdlell]|1

1] 0 1(0(dje|1

Fig.2.Lattice diagram
Here, Aisalattice Wajsherg algebra. A fuzzy subset u of Ais
defined by,

()_{.54 whenx =0 forallx e A
HX) =133 whenx ={d,e,1} forallx€ A

Then, u isafuzzy associative Wi-ideal of A.
Proposition 3.2.3. If u is a fuzzy associative WI-ideal of A
with respect to x then u(x) = u(0).
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Proof. Let u beafuzzy associative WI-ideal of A with respect

tox if x = (0, 1).Then it is trivia, we assume that x is

neither O nor 1. Then,

u(x) = min {u(((x » 0)* > x)", u((0 > x)")}

[From (ii) of definition 3.2.1]

Hence, weget p(x) = u(0).m

Proposition 3.2.4. Every fuzzy associative WI-ideal of lattice

Wajsberg algebraA with respect to 0 isafuzzy Wi-ideal of A.

Proof. If u isafuzzy associative Wl -ideal of A with respect to

0.Then, we have

u(C) = min{u((x » )" - 0),u((y » 00}  for 4l

X,y €A [From (ii) of definition 3.2.1]

= min{u((x > ¥)"), 1)}
Hence, we have u isafuzzy Wi-ideal of A.m

Proposition 3.25. Let u be a fuzzy W-ideal of lattice
Wajsberg algebra A. u is afuzzy associative WI-ideal of A if
and only if it satisfies, u((z » (y » x)*)*) = u(((z -
yr-xforal xyz€eA4.
Proof. Let u be a fuzzy Wi-ideal of A satisfying u((z -
y-xxx>uz—>yr—xxfor dl xy,z€4
Then we have,
1(z) =2 min {u((z > (v > ), u((y - )"}
=min {u(((z > y)" = ), u((y » )}
So, u isafuzzy associative Wi-ideal of A.
Conversely, supposethat u be afuzzy associative Wi-ideal of
A. Then we have, u((z - (y » x)*)*) = min{u(((z »
YoXR KL YRR Y2 YR—IIK)
Let us consider,
(Z=>@-=0) =2@E->y)) —>x
=x"=>((z->G->0)->Z->y)")
=x' > (z->y->GE->G->x)

=(x—>y)—>(x*—>((y—>x) —)z*))
=z->y)-> (%) - -2z))
=@z->y->(z->y)->z->y)
=1

It follows that
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pw((z = (v = x))") = min{u(0), u(((z > ¥)* - x)")}
=pu(((z-y) - x")
Hence, we have
pz->@G->)))zu@z->y)" > x)).n

Proposition 3.2.6. Let u be a fuzzy W-ideal of lattice
Wajsherg algebra A. i is a fuzzy associative WI-ideal of A if
and only if it satisfiesu(z) = u(((z > x) - x)") for all
X,z € A.

Proof. Let u be afuzzy associative Wi-ideal of A.

Then from (ii) of definition 3.2.1 we have,

u(z) =z min{u(((z » y)" = 0", u((y » x)")} for all
X,y,z € A. (3.2.1)
Taking y = x in 3.2.1 we get,

1(z) = min{u(((z > x)" - 0)"), u((x > x)")}
= min{u(((z > x)" > x)"), u(0)}
=u((@~>x) ~=x))
Conversealy, if uis a fuzzy Wi-ideal and satisfies u(z) =
u(((z - Xx) > x)*) forx,z€e A

Clearly,((z - 1)) - (> 2)7) = (z>¥)) =0
and (z->y)' > (z-x)) <(x->y)"
It follows that,
(Z=>0G=0) =20 >x)">(z=>y)>x)7) =0
iz~ -0 z2u((z->y->0)->x)" ->x)")
= minfu(((z-> @ > x)" > 2, p((z->y)" -
T
1(((z » ¥)* - x)") = min {u(0), u(((z - y)* > x)")}
=pu(((z=y)" = x))
From proposition 3.2.3, we get u is a fuzzy associative
W -ided of Am
IV. CONCLUSION

In this paper, we have introduced the notions of fuzzy
positive implicative WI-ideal and fuzzy associative W -ideal
of lattice Wajsherg algebras. Further, we have discussed the
relationship between fuzzy positive implicative Wi-ideal and
fuzzy WI-ideal, fuzzy associative WI-ideal and fuzzy
W-ideal in lattice Wajsberg algebra. Moreover, we have
given some of the characterizations of fuzzy associative
WI-ideal.
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