
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3S3, November 2019

111

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319



Abstract: In software development, Software quality analysis

plays a considerable process. Through the software testing, the

quality analysis is performed for efficient prediction of defects in

the code. Due to the complicated structure of software projects,

code examination has become a demanding issue that has to be

addressed at the initial stage of testing for achieving the quality

improved results. In order to resolve these issues, the Stochastic

Gaussian Neighbor Embedding based Probit Regressive

Reweight Boost Classification (SGNE-PRRBC) is introduced for

accurate quality prediction system through code examination

proficient system. The SGNE-PRRBC technique considers the

number of program files as input for software quality analysis

through feature selection and classification. Initially, the

number of program files is taken from the dataset (DS). After

collecting the files, the Gaussian distributive stochastic neighbor

embedding technique choose the features (i.e. code metrics)

based on the distance similarity. With the assist of Pearson

correlative probit regressed reweight boost technique, the

classification of program files is performed. The boosting

algorithm creates ‘m’ number of weak classifiers i.e. Pearson

correlative probit regression to categorize the input program

files as normal or defected through analyze the source codes and

chosen metrics. After that, the weak learners results are

combined into strong through minimizing the out of sample

error with gradient descent function. This enhances the accuracy

of quality prediction and lessens the false positive rate (FPR).

Experimental analysis is performed with various metrics namely

accuracy, FPR and computation time (CT) with number of

program files. Experimental results evident that the

SGNE-PRRBC technique achieves better performance in terms

of accuracy, CT and FPR as compared to the conventional

methods.

Keywords: Software quality analysis, software testing,

software metrics, Gaussian distributive stochastic neighbor

embedding technique, feature selection, Pearson correlative

probit regressed reweight boosting, classification.

I. INTRODUCTION

 Software quality analysis is a significant process due to its

effects on the various aspects of the system such as

functionality, reliability, availability, compatibility, and

maintainability in software development projects. The most

complicated issues in software management are the software

quality analysis through the testing. Therefore several

Revised Manuscript Received on November 11, 2019.

* Correspondence Author

NOOR AYESHA, Research Scholar, Dept. of Computer Science,

Bharathiar University, Coimbatore, India.

YETHIRAJ N G, Assistant Professor, Dept of Computer Science,

Maharani‟s Science College for Women, Bengaluru, India.

models have been designed for software quality testing, each

with its own unique merits and demerits, with respect to the

environment and the area in which it is to be applied. By

applying the machine learning techniques, several

limitations found in the software testing using existing

algorithms were minimized resulting in the improvement of

the software quality.

 A fuzzy-filtered neuro-fuzzy framework was developed in

[1] for detecting the faults of software projects to enhance the

software quality. However, the inter-version and inter-project

fault prediction performance was not enhanced with lesser

time. In [2], a gradual relational association rule mining and

artificial neural networks (HyGRAR) was designed to

discover the defective and non-defective software entities.

The designed method failed to use an efficient machine

learning technique for accurate defective prediction with

minimum time. By using the open-source software, several

machine learning models were developed in [3] for software

quality prediction. But the performance of software quality

prediction time remained unaddressed.

 In [4], an improved correlation oversampling method was

designed to identify the software defect with class

imbalance learning. The designed method was not

improved the overall accuracy. In [5], Defect Prediction

using Attention-based Recurrent Neural Network

(DP-ARNN) was designed with significant features. But the

performance of defect prediction was not improved while

considering the more projects.

 A CNN-IndRNN model was developed in [6] to identify

the open-source software defects for enhancing the software

quality with dynamic features. But, the time was not reduced.

For software defect prediction, Stacked denoising

autoencoders (SDAEs) and two-stage ensemble learning

were introduced in [7] with feature learning. But the error

rate of defect prediction was not effectively minimized. A

Markov chain and a systematic framework were developed in

[8] for software quality analysis by identifying the defects.

But the framework failed to perform the feature selection.

 The Fuzzy Analytical Hierarchy Process (FAHP) was

developed in [9] using multi-objective decision-making

method to reliably evaluate the software quality. However,

software quality prediction accuracy was not improved. With

the neural forest classifier, a Just-In-Time Software Defect

Prediction (JIT-SDP) method was presented in [10]. But, it

does not perform the other software engineering tasks

namely defect prediction and

software code review.

Stochastic Embedded Probit Regressive

Reweight Boost Classifier for Software Quality

Examination

Noor Ayesha, Yethiraj N G

Stochastic Embedded Probit Regressive Reweight Boost Classifier For Software Quality Examination

112

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

1.1 Contribution of the research work

 The major issues of conventional methods are addressed

by introducing a novel SGNE-PRRBC technique. The

contribution of SGNE-PRRBC technique is summarized as

below,

 To enhance the accuracy of software quality prediction, the

SGNE-PRRBC technique is proposed. This contribution

is achieved by feature selection and classification. The

SGNE-PRRBC technique uses Pearson correlative

probit regressed reweight boosting technique for

classifying the program files by analyzing the source

codes and software metrics through the Pearson

correlation. Based on the correlation results, the probit

regression function classifies the given application

program files as normal or defected. The strong

classification results with minimal error are attained by

combining the results.

 To lessen the FPR, the SGNE-PRRBC technique utilizes

the gradient descent function to reduce the result of

sample error of weak classifiers. The SGNE-PRRBC

technique accurately finds the defects in a given

application program.

 To lessen the CT, the Gaussian distributive stochastic

neighbor embedding technique is presented. The

technique selects suitable source code metrics for

analyzing the software programs after feature selection.

The feature selection is performed with Gaussian

distributive function and identifying the relevant metrics

for code examination.

1.2 Structure of the paper

 The article is ordered into five different sections. Section 2

reviews the related works. Section 3 briefly describes the

proposed methodology of SGNE-PRRBC for improving the

accuracy of software quality. Section 4 provides information

on the experimental evaluation along with parameter

settings. In section 5, the experimental outcomes and

comparative analysis are presented using various

performance metrics. Finally, the last section ends the work

by the conclusion.

II. RELATED WORKS

 A Learning Deep Feature Representation (LDFR) was

developed in [11] for identifying the software defects. The

model selects the top-level feature representation but failed to

minimize the error of defect prediction. Atomic

Class-Association Rule Mining (ACAR) technique was

developed in [12] for predicting the software defects by

analyzing the interaction between features. However, the

software prediction time was higher.

 Depending on the software metrics, a Layered Recurrent

Neural Network (L-RNN) was designed in [13]. But the

performance of different parameters remained unaddressed.

Software Fault Detection and Recovery (SFDR) were

developed in [14] for identifying the fault that occurs in the

software. The designed method failed to use data mining

techniques for efficient fault recovery.

 An extreme learning machine with different kernel

approaches was developed in [15] for fault prediction with

software code metrics. The designed methods were not

achieving higher accuracy in fault prediction. Hybrid Search

Based Algorithms (HSBA) were designed in [16] for

predicting the software faults using metrics. But the designed

algorithm has higher time complexity. A novel method was

developed in [17] to improve the quality assurance and

software ecosystems using quality attributes. However, code

review analyzes were not performed.

 In [18], a Cross-project semisupervised defect prediction

(CSDP) was carried out for software quality prediction. The

method does not enhance the robustness for various kinds of

heterogeneous cross-project data. The machine learning

techniques were introduced in [19] for automatically

identifying the feasible source code defects. The designed

technique failed to automatically detect more defect patterns.

For software defect prediction, a Weighted Least Squares

Twin Support Vector Machine (WLSTSVM) was designed

in [20]. The method does not choose the parameters to

enhance the software defect prediction performance.

 The issues of conventional methods are resolved by

proposing the efficient technique, called SGNE-PRRBC. The

brief description of SGNE-PRRBC technique is presented in

the following sections.

III. METHODOLOGY

In software engineering, software testing is the process to

discover the failures in source code lines and enhance the

software quality. Software quality analysis is a significant

concern in software testing with the code metrics. The

different methods have been developed to predict software

defects for improving software quality. An efficient

technique called the SGNE-PRRBC technique is developed

by using software metrics to enhance the quality of a software

solution during the development process.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3S3, November 2019

113

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

 The architecture of SGNE-PRRBC technique

is depicted in figure 1 that includes of two processes namely

feature selection and classification. Initially, the number of

program files are collected from the DS

and each program file comprises software codes

 for performing the software quality

analysis. After that, the features are selected for classifying

the given program files as normal or defected. Here the

features are represented as a software metrics. With the help

of selected software metrics, the program files are classified

using ensemble classification techniques. As a result,

proposed the SGNE-PRRBC technique improves the

accuracy of review or testing. The process of SGNE-PRRBC

technique is explained in the next sections.

1.1 Gaussian distributive stochastic neighbor

embedding based feature selection

In SGNE-PRRBC technique, the first process is the

feature selection (i.e. metric selection) for classifying the

program files in order to enhance the software quality. By

applying the Gaussian distributive stochastic neighbor

embedding technique, the feature selection is performed. It is

a machine learning technique used for obtaining similar

metrics based on the Gaussian distribution function. A

software metric is a measure of software features used to

identify the quality of the softwares. In general, there are

several metrics are available for testing the software program

files. The testing is performed with the number of metrics

that causes a higher complexity of quality prediction.

Therefore, the proposed technique selects more similar

metrics for quality analysis. Let us consider the number of

metrics . Then the Gaussian

distributive function is applied for finding similar features as

follows,

 (1)

 From (1), indicates a output, indicates

number of metrics, indicates a objective i.e. software

quality analysis , indicates a deviation. Gaussian

distributive function calculates the distance similarity

among and with Euclidean distance .

Based on the distance measure, the features which are closer

to the objectives is selected and distant features are removed.

At last, the relevant metrics are chosen for classification

which enhance the accuracy and minimize the CT of quality

prediction.

1.2 Pearson correlative probit regressed reweight

boosting technique

 The proposed SGNE-PRRBC technique uses

the Pearson correlative probit regressed reweight boosting

technique to perform the program file classification with the

selected software metrics. The Boosting is an ensemble

classification algorithm that converts the results of weak

learner results into strong ones. Weak learner is a base

classifier that does not provide accurate classification for

software quality prediction. By combining the results of weak

classifier, the strong learner is also a classifier which

enhances the base learners performance. Therefore, the

SGNE-PRRBC technique utilizes ensemble classification

algorithm for software code quality prediction with the

various metrics. Figure 2 depicts the structure of ensemble

learning algorithm.

Stochastic Embedded Probit Regressive Reweight Boost Classifier For Software Quality Examination

114

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

 Figure 2 depicts the structure of the Pearson correlative

probit regressed reweight boosting ensemble classifier. Let us

assume the training sets where indicates a input

i.e. comprises a source code

 and indicates the final ensemble

classification results. Ensemble classifier creates an empty

set of „m‟ weak learners with number of

 and selected features. The proposed

ensemble technique uses the weak learner as a probit

regression to classify the program file as a correct or defected

code.

 The regression is the machine learning technique that

performs the statistical processes for measuring the

relationships between two variables (i.e. source code and

software metrics). The regression function uses the probit

model i.e. probability + unit where the output falls into a

specific one of the categories „0‟ or „1‟. Hence the regression

function is called a binary classification model. The

relationships between two variables are discovered by using

the regression function with the Pearson correlation.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3S3, November 2019

115

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

 Figure 3 illustrates a Pearson correlative probit regression

for classifying the program file is normal or defected based

on the set of metrics. The regression function receives the

input of source codes and performs

the analysis with the set of metrics

 with the help of correlation

measure. The correlation is measured using below

mathematical expression,

 (2)

 In (2), indicates a Pearson correlation coefficient,

symbolizes source code, symbolizes a metrics,

indicates a sum of product of paired score, is the sum of

score, is the sum of squared score, is the

sum of squared score of . The Pearson correlation

coefficient offers the output value between -1 and +1 where

„- ‟ denotes the negative correlation and ‟

denotes the positive correlation. The regression function

returns „1‟ when the positive correlation is appeared.

Otherwise, it returns „0‟.

 (3)

 From (3), symbolizes the probit regression function.

Positive correlation among the source code and metrics

denotes „1‟ that the software program is normal and it

provides expected results. Here, „0‟ denotes a software

program not matched with the expected results. Thus, the

regression function significantly finds the defect occurrence

on the source code line of the input software program. In this

way, all the program files are classified as normal or

defected. However, the weak learner output includes some

training error that affects the classification performance. To

enhance the classification accuracy, the boosting classifier

combines the outcomes of weak learners.

 (4)

 From (4), indicates a output of ensemble

classifier, indicates the output of weak classifier

results. After that, the ensemble classifier assigns similar

weight to each weak learner. The weighted sums of weak

learners are formalized as below,

 (5)

 Where, represents the weight assigned to

weak classification results. The weight is random numerical

values. After assigning similar weight to each weak

classifier, the out of sample error is calculated depends on the

difference among expected and empirical error (i.e. observed

error). The out of sample error is mathematically calculated

using the given formula.

 (6)

 Where, denotes an out of sample error of

weak classifiers, represents the expected error, is

the empirical error. Depends on the error rate, the weight of

each weak learner is readjusted known as re-weighting.

Hence the name of boosting is called as reweight boosting

classifier. The misclassified input obtains higher weight and

has the lesser weight if the weak learner correctly classified

the program files. The reweighted sum of weak learner are

obtained as follows,

 (7)

 From (7), is an outcome of strong classification results,

indicates an updated weight of weak learner . By

applying the gradient descent function, the ensemble

classifier minimizes the out of sample error for achieving

higher classification accuracy.

(8)

Stochastic Embedded Probit Regressive Reweight Boost Classifier For Software Quality Examination

116

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

 From (8), indicates a gradient descent function,

is the argument of minimum, is an out of

sample error of weak learners . The final output of

ensemble classification results lessen the error rate and

enhance the classification results. By using an ensemble

classification algorithm, the proposed technique addresses

the classification issues in code examination proficient

system. It offers efficient results for classify the program files

as correct and defected. Therefore, the defected codes are

rewritten and enhance the quality of the software program by

efficient prediction of defects in the codes.

 Algorithm 1 illustrates an algorithmic process of the

proposed method for examining the software code to improve

the software quality analysis through the ensemble

classification algorithm. Initially, the software programs are

collected from the DS and the codes are used for quality

analysis. Then the relevant metrics are selected for analyzing

the software codes. The reweight boost ensemble technique

uses the set of weak classifiers to analysis the source code

with the features (i.e. software metrics). The analysis is done

with the help of Pearson correlative probit regression. After

analyzing, the files are classified as normal or defected.

Through performing the weight updates, the output of weak

classifier results is combined to create a strong one. For each

weak classifier, weights are assigned subsequently the out of

sample error is computed. The proposed ensemble classifier

utilizes gradient descent function to lessen the error rate of

classification. Based on the out of sample error, then the

weight of every weak learner gets updated. At last, the

ensemble technique discovers the best classifier with lesser

error. Therefore, the ensemble technique enhances the

accuracy of classification and

lessens the FPR.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3S3, November 2019

117

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

IV. EXPERIMENTAL SETUP AND PARAMETER

SETTINGS

Experimental analysis of SGNE-PRRBC technique and

existing methods Fuzzy-filtered neuro-fuzzy framework [1]

and HyGRAR [2] is performed in JAVA programming. The

data set using open source projects collected from

https://sourceforge.net/. The DS comprises the number of

open source projects. For the experimental consideration,

SchoolMate project files are taken for testing the quality of

softwares. The SchoolMate project comprises the 66 program

files. Each and every source code of the program is

monitored and finds the normal or defected files to enhance

the software quality. Experimental analysis is performed

with various metrics namely

 Accuracy

 False-positive rate

 Computation time

V. RESULTS AND DISCUSSION

The performance results of SGNE-PRRBC technique and

existing methods [1] and [2] are discussed in this section

with various metrics. With the assist of table and graphical

representation, the performance is evaluated according to the

following metrics.

1.3 Impact of Accuracy

Accuracy is measured as number of program files

are correctly classified as normal or defected from the DS.

The accuracy is mathematically calculated using the given

formula,

 (9)

Where represents the accuracy, denotes a

number of files. Accuracy is calculated in percentage (%).

 The comparative result analysis of accuracy is presented in

below Table 1.

 Table 1 describes the experimental result of accuracy for

three methods with number of program files in the range

from 5 to 50. These programs are taken from the school mate

project files. The results show that the accuracy of

SGNE-PRRBC technique is minimized as compared to the

existing Fuzzy-filtered neuro-fuzzy framework [1] and

HyGRAR[2] respectively.

https://sourceforge.net/

Stochastic Embedded Probit Regressive Reweight Boost Classifier For Software Quality Examination

118

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

Figure 4 given above illustrates the accuracy of file

classification. In the above graph, axis represents the

number of program files taken from the schoolmate projects

and axis denotes the accuracy of file quality prediction

through the classification. As inferred in the figure, the

accuracy is found to be improved using the proposed

SGNE-PRRBC technique than the other two existing

methods.

This is due to the SGNE-PRRBC technique uses the

ensemble classification algorithm. Initially, the Pearson

correlative probit regression function is used to analyze the

source codes of the program files with the selected software

metrics. Then the regression function classifies the input file

as normal or defected based on the probabilistic results.

These weak learners‟ results are summed and obtain the

strong classification results as an output. From the

experimental, it is identified that for „5‟ program files are

taken in the first iteration, the proposed SGNE-PRRBC

technique correctly classified 4 program files and the

accuracy is 80% whereas other two existing methods

Fuzzy-filtered neuro-fuzzy framework [1] and HyGRAR[2]

correctly classified 3 and 2 files and their accuracy are 60%

and 40% respectively. The accuracy of SGNE-PRRBC

technique is increased by 10% and 25% as compared to

existing [1] and [2].

1.4 Impact of False positive rate

FPR is measured as a number of program files

which are incorrectly classified as normal or defected from

the software programs. FPR is formalized as below,

(10)

From (10), denotes the false positive rate,

indicates a number of program files. FPR is measured in

percentage (%).

 Table 2 describes the experimental results of FPR for three

methods with number of program files is varied from 5 to 50.

The graphical analysis of false-positive rates of three

methods is shown in figure 5.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-3S3, November 2019

119

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

Figure 5 given above shows the performance

graphical representation of FPR. The numbers of program

files are given to the axis and axis denotes the FPR.

From figure 5, it is evident that, the SGNE-PRRBC

technique provides minimal FPR than the other two methods.

This is because of the fact that the SGNE-PRRBC technique

uses the ensemble classification minimizes the out of sample

error using gradient descent function. The initial weight is

updated depending on the error value. This helps to

minimize the incorrect program files classification. The

FPR of SGNE-PRRBC technique is reduced by 41% and 56%

as compared to existing [1] and [2].

1.5 Impact of CT

CT is measured as the amount of time consumed for

classifying the given program files as normal or defected. CT

is formalized as below,

 (11)

Where represents the computation time, represents

the number of program files, indicates a time for

classifying one program files. CT is measured in

milliseconds (ms).

Table 3 describes the experimental results of CT for three

methods with number of program files. From table 3, the

result of CT evident that, the SGNE-PRRBC technique is

provides the minimal CT than the conventional methods.

 As shown in figure 6, the comparative analysis of

CT with three different methods of SGNE-PRRBC

technique and existing Fuzzy-filtered neuro-fuzzy

framework [1] and HyGRAR [2]. In the above graphical

result, it is inferred that the CT using SGNE-PRRBC

technique is lesser than the conventional methods. This is

due to the utilization of Gaussian distributive stochastic

neighbor embedding technique. The designed technique

performs feature selection for software quality analysis.

There are different metrics are selected for analyzing the

source code lines of programs for identifying the defect or

normal. The stochastic neighbor embedding technique

discovers the metrics that is closer to software quality

prediction are chosen based on the Gaussian's distributive

function. Finally, the relevant metrics are selected for

classification. This results in improves the accuracy and

lessen the CT of quality prediction. The result of

SGNE-PRRBC technique reduces the CT by 10% and 18%

as compared to existing [1] and [2].

 The above-discussed result evident that

SGNE-PRRBC technique is enhances the code examination

proficient system in software engineering with greater

accuracy and lesser time.

VI. CONCLUSION

In this paper, the SGNE-PRRBC technique is

developed by combining feature selection and classification.

The SGNE-PRRBC technique provides the contributions of

improving the software code quality analysis using an

ensemble classifier based code review expert system. First, a

Gaussian distributive stochastic neighbor embedding

technique is applied to find the software metrics in the

feature selection. With the selected features, the

classification is performed by applying a Pearson correlative

probit reweight boosting technique. The code examination

is carried out through the

regression analysis. At last,

the ensemble classifier model

Stochastic Embedded Probit Regressive Reweight Boost Classifier For Software Quality Examination

120

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: C10401183S319/2019©BEIESP

DOI: 10.35940/ijrte.C1040.1183S319

is designed to enhance the accuracy of quality prediction

with lesser time. Experimental analysis is performed with

number of program files. The evaluation results

demonstrated that SGNE-PRRBC technique is feasible for

software development and provides better performance in

terms of accuracy and CT as well as FPR than the

conventional methods.

REFERENCES

[1] Kapil Juneja, “A fuzzy-filtered neuro-fuzzy framework for software fault

prediction for inter-version and inter-project evaluation”, Applied Soft

Computing Journal, Elsevier, Volume 77, 2019, Pages 696–713

[2] Diana-Lucia Miholca, Gabriela Czibula, Istvan Gergely Czibula, “A novel

approach for software defect prediction through hybridizing gradual

relational association rules with artificial neural networks”, Information

Sciences, Elsevier, Volume 441, May 2018, Pages 152-170

[3] Arvinder Kaur and Inderpreet Kaur, “An empirical evaluation of

classification algorithms for fault prediction in open source projects”,

Journal of King Saud University – Computer and Information Sciences,

Elsevier, Volume 30, 2018, Pages 2–17

[4] K. Nitalaksheswara Rao and Ch. Satyananda Reddy, “An Efficient

Software Defect Analysis Using Correlation-Based Oversampling”,

Arabian Journal for Science and Engineering, Springer, Volume 43, Issue

8, 2018, Pages 4391–4411

[5] Guisheng Fan, Xuyang Diao, Huiqun Yu, Kang Yang, and Liqiong Chen,

“Software Defect Prediction via Attention-Based Recurrent Neural

Network”, Scientific Programming, Hindawi, Volume 2019, April 2019,

Pages 1-14

[6] Yuancheng Li, Longqiang Ma, Liang Shen, Junfeng Lv, Pan Zhang, “Open

source software security vulnerability detection based on dynamic

behavior features”, PLoS ONE, Volume 14, Issue 8, Pages 1-14

[7] Haonan Tong, Bin Liu, Shihai Wang, “Software defect prediction using

stacked denoising autoencoders and two-stage ensemble learning”,

Information and Software Technology, Elsevier, Volume 96, 2018,

Pages 94-111

[8] Ivan Janicijevic, Maja Krsmanovic, Nedeljko Zivkovic, Sasa Lazarevic,

“Software quality improvement: a model based on managing factors

impacting software quality”, Software Quality Journal, Springer, Volume

24, Issue 2, 2016, Pages 247–270

[9] Hussam Ghunaim and Julius Dichter, “Applying the FAHP to Improve the

Performance Evaluation Reliability of Software Defect Classifiers”,

IEEE Access, Volume 7, 2019, Pages 62794 – 62804

[10] Yu Qiu, Yun Liu, Ao Liu, Jingwen Zhu, Jing Xu, “Automatic Feature

Exploration and an Application in Defect Prediction”, IEEE Access,

Volume 7, 2019, Pages 112097 – 112112

[11] ZhouXu, ShuaiLi, JunXu, JinLiu, XiapuLuo, YifengZhang, TaoZhang,

JackyKeung, YutianTang, “LDFR: Learning deep feature representation

for software defect prediction”, Journal of Systems and Software,

Elsevier, Volume 158, 2019, Pages 1-20

[12] Yuanxun Shao, Bin Liu, Shihai Wang, Guoqi Lia, “A novel software

defect prediction based on atomic class-association rule mining”, Expert

Systems with Applications, Elsevier, Volume 114, 2018, Pages 237-254

[13] Hamza Turabieh, Majdi Mafarja, Xiaodong Li, “Iterated feature selection

algorithms with layered recurrent neural network for software fault

prediction”, Expert Systems With Applications, Elsevier, Volume 122,

2019, Pages 27–42

[14] Amjad A. Hudaib, Hussam N. Fakhouri, “An Automated Approach for

Software Fault Detection and Recovery”, Communications and Network,

Volume 8, Pages 158-169, 2016

[15] Lov Kumar, Anand Tirkey, Santanu-Ku. Rath, “An effective fault

prediction model developed using an extreme learning machine with

various kernel methods”, Frontiers of Information Technology &

Electronic Engineering, Springer, Volume 19, Issue 7, 2018, Pages

864-888

[16] Wasiur Rhmann, Babita Pandey, Gufran Ansari, D.K.Pandey, “Software

fault prediction based on change metrics using hybrid algorithms: An

empirical study”, Journal of King Saud University - Computer and

Information Sciences, Elsevier, 2019, Pages 1-16

[17] Jakob Axelsson, Mats Skoglund, “Quality assurance in software

ecosystems: A systematic literature mapping and research agenda”, The

Journal of Systems & Software, Elsevier, Volume 114, 2016, Pages

69-81

[18] Fei Wu, Xiao-Yuan Jing, Ying Sun, Jing Sun, Lin Huang, Fangyi Cui,

Yanfei Sun, “Cross-Project and Within-Project Semisupervised Software

Defect Prediction: A Unified Approach”, IEEE Transactions on

Reliability, Volume 67, Issue 2, 2018, Pages 581 – 597

[19] Yuwei Zhang, Ying Xing, Yunzhan Gong, Dahai Jin, Honghui Li, Feng

Liu, “A variable-level automated defect identification model based on

machine learning”, Soft Computing, Springer, 2019, Pages 1–17

[20] Divya Tomar and Sonali Agarwal, “Prediction of Defective Software

Modules UsingClass Imbalance Learning”, Applied Computational

Intelligence and Soft Computing, Hindawi Publishing Corporation,

Volume 2016, January 2016, Pages 1-12

