
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

8449

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6410098319/2019©BEIESP
DOI: 10.35940/ijrte.C6410.098319
Journal Website: www.ijrte.org

Abstract: In any heterogeneous multicore system, there are
numerous amount of processors with different platform and all
the processing units are fabricated on a common single unit
preferably on a System on Chip. As there is a tremendous
amount of parallelism encompassed in a multicore system,
proper utilization of the cores is a big challenge in the current
era. Hence a more automated software approach is required
like an agent based graph coloring algorithm to find the free
processor and schedule the tasks on the respective cores.
Predominantly the entire process of scheduling the tasks on
multicore system is based on arrival time of process. This paper
incorporates the scheduling on the linux 2.6.11 kernel and
GEMS simulator for multicore implementation. The core
utilization in this type of agent scheduling is 50% more than
the existing scheduling mechanism.

Keywords: Agent based graph coloring, Processor allocation,
Heterogeneous Multicore system, scheduling, Process
classification.

I. INTRODUCTION

Multicore system is a new innovation and a very

big alternate to sequential processing. Massive parallel
processing is the greatest advantage of this SoC processors.
However, lot of challenges imposed towards the design of
many core system. Predominantly the legacy code, compiler
modification, operating system scheduling are the major areas
of consideration for multicore design. In homogeneous
multicore system, process scheduling has little complexity
rather than the heterogeneous multicore processors in the
sense that we cannot allocate the process based on affinity
based scheduling. Considering all the difficulties involved
with hardware and software, a more efficient approach is
required for heterogeneous processor scheduling. A more
intelligent approach is to use an agent inside the operating
system scheduler. The basic idea is to incorporate an agent
based graph coloring algorithm to find the number of

Manuscript published on 30 September 2019
* Correspondence Author

Dr.G.Muneeswari*, Department of Computer Science and
Engineering, Faculty of Engineering, CHRIST (Deemed to be University),
Bengaluru, India. Email: muneeswari.g@christuniversity.in

Antony Puthussery, Department of Science and Humanities, CHRIST
(Deemed to be University), Bengaluru, India.
Email:frantony@christuniversity.in

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

processor required to execute the given set of processes from
the ready queue. Each color from the resultant graph will
represent the unique heterogeneous processor and
the overlapping time interval of process is resolved by
allocating the interleaving process to different cores. The
overall paper organization is as follows. In section II, the
related work is discussed and in section III, an insight into
working methodology is proposed. Section IV describes the
results and discussions and finally section V concludes the
paper.

II. RELATED WORK

The algorithm starts from a value equal to m(G), calculated as
given in Algorithm 1 [1]. A self-stabilizing edge-coloring
algorithm [2] was proposed by Kauther and Dekar which
works well for small graphs. Another method to solve the
graph coloring problem was introduced by Wang and Qiao
which use a non-monotonous activation function [4]. With
regular graphs [5] In [6], it was proved that, this bound can be
lowered to 2d3, that the b-chromatic number on an arbitrary
d-regular graph with girth g=5 is at least (d+1) / 2, and that
every d-regular graph, where d is greater or equal to 6, with a
diameter at least d and with no 4-cycles can be b-colored with
d+ 1 colors. Outer planer graphs [7,12] also taken for
scheduling criteria. Some works even tried finding its exact
value for some types of graphs [8]. There are many b-coloring
based applications, such as clustering, web analysis,
information retrieval, and medical diagnostics [10]. The
authors of [11] enhanced this result when showing
that φ(G)=d+1 for a d-regular graph G that contains a
diameter ≥6 and no cycle of order 4. The hard and soft affinity
scheduling and the related performance metric is discussed in
[13]. In [14] an equitable antimagic labelling approach with
minimum running time has been discussed.

III. WORKING METHODOLOGY

The main idea behind this proposed work is to find an
efficient scheduling algorithm for processor allocation using
intelligent agents. The core concept is divided into three sub
components wherein the ultimate goal is to improve the
processor utilization in heterogeneous multicore system. The
first component is the main processor allocation algorithm
which is incorporated with Process_Classify function and
Agent_Coloring function. Initially the set of processes with
different arrival time is taken from the ready queue of memory
by the scheduler.

Process Scheduling in Heterogeneous Multicore
System using Agent based Graph Coloring

Algorithm

G. Muneeswari , Antony Puthussery

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.C6410.098319&domain=www.ijrte.org

Process Scheduling in Heterogeneous Multicore System using Agent based Graph Coloring Algorithm

8450

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6410098319/2019©BEIESP
DOI: 10.35940/ijrte.C6410.098319
Journal Website: www.ijrte.org

All the three components as part of the graph coloring
algorithm is incorporated as part of the scheduler. The
automatic agent scheduling is required to reduce the average
waiting time of the process in the ready queue.

In Fig.1, For example P1 to P10 process with three sets of
interleaving arrival time is taken for evaluation.

Fig. 1. Process Arrival Time
The main algorithm for processor allocation is shown in

Fig.2.

Fig. 2. Main Algorithm for Processor Allocation

The Parent Agent (PA) is an intelligent which schedules
the tasks on different heterogeneous cores. It calls
another component Process_Classify function which
returns a graph with set of processes P1 to pn. The
outcome of this component is shown in fig.3 with
different graphs with different set of processes. Every
vertex of the graph is designated as Agent Vertex.

Fig. 3. Process Classification and Graph Coloring

In Fig.4, The detailed algorithm for Process Classification

is depicted. After the process classification is enabled, the
different graphs are constructed with each vertex is being
nominates as an Agent Vertex.

In our example shown in Fig.1, Process P1, P2, P3, P4 have
overlapping time interval. So they can be represented as the
first graph. Secondly Processes P5, P6, P7 have again the
interleaved time interval. They will be put up in a different
graph set. Finally, Process P8, P9, P10 have the overlapping
time interval. So, they again form a separate group of graph
set. In the NUMA architecture, affinity based scheduling does
not required as the same configuration is implemented in
every core. But in the heterogeneous multicore system,
affinity based scheduling must be incorporated at the back
ground during context switching. Both soft and hard affinities
can be incorporated along with agent coloring scheme.
Suppose if process P1 executed in Core1 before context
switching, then P1 should be scheduled on same Core1 after
context switching also. Process priority is not considered in
the evaluation as we do not bother about the real time task.

Ideally the proposed algorithm design is much simpler

compared to the existing scheduling algorithm for multicore
system since there is no much complexity involved with the
hardware design. The average waiting time of the process is
calculated based on the arrival time of all the process in the
ready queue. This parameter is taken as a performance metric
for evaluating the proposed algorithm. Finally, none of the
processor are kept in the idle state as and when large number
of processes are waiting in the
ready queue.

Main Algorithm for Processor Allocation:
For every new process Pi to Pn perform the
following operation:
Begin
Step 1: Parent Agent (PA) is initialized

and interacts with the scheduler of
operating system.

Step 2: PA gets the number of process Pi
to Pn from the ready queue

Step 3: PA obtains the burst time Bi and
arrival time Ai for all the
processes Pi to Pn.

Step 4: PA classifies all the processes
based on arrival time by calling
the algorithm using function
Process_Classify(ATi)

Step 5: PA gets the process sets from the
Process_Classify function.

Step 6: Every set of processes are
represented as a different graph
(Gi) and colored using
Agent_Graph_Coloring (Si)
function.

Step 7: Each color will be designated as a
different processor PR-i in the
heterogeneous multicore system.

Step 8: Agent with the same color from
different set can be assigned to
the same core in the multicore
system by the Parent Agent.

Step 9: Repeat steps 7 and 8 until no
 more agent is left out in the graph
 set.
Step 10: Parent Agent schedules all the

process (Pi to Pn) to the
respective processor which then
starts execution.

End

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

8451

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6410098319/2019©BEIESP
DOI: 10.35940/ijrte.C6410.098319
Journal Website: www.ijrte.org

Fig. 4. Process Classification Algorithm

Based on the arrival time Process Classify Agent (PCA)
identifies the different sets of processes. Finally, the different
processors are identified with different colors and there is no
overlapping of processes within the same set of processors. It
is illustrated with a diagram in Fig.5.

Fig. 5. Processor allocation based on coloring

The agent graph coloring algorithm is designed with a Vertex
Coloring Agent (VCA) whose functionality is to assign the
color to the Agent Vertex. The constraint for this algorithm is
that no adjacent vertices are colored with the same color with
the minimum chromatic number.

The final algorithm for graph coloring is elaborated in Fig.6.

IV. RESULT AND DISCUSSION

Fig. 6. Agent Graph Coloring Algorithm

The final chromatic number would be the number of cores in
the heterogeneous multicore system.

IV. RESULT AND DISCUSSION

For the evaluation results Linux kernel version 2.6.11
along with FLAME tool is used for agent based scheduler
design for operating system scheduling. Table-I shows the
number of heterogeneous cores and the average waiting time.

Table- I: Number of cores vs Average Waiting Time of

processes

Total Cores
Average Waiting Time of

Processes(ms)
10 9.4
20 8.4
30 8.2
40 7.5
50 6.3

 60 5.6
70 4.2
80 3.7
90 2.6

100 1.2
From this analysis, it is found that the number of core

utilization is very high with the proposed agent based graph
coloring algorithm.

Fig.7 shows the processor utilization in the heterogenous
multicore system with the comparative study between affinity
based scheduling and agent
based graph coloring algorithm.

Algorithm for Process Classification:
For every new process Pi to Pn with Arrival Time Ai

perform the following operation:
Process_Classify (Pi, ATi)

Begin

Step 1: Process Classify Agent (PCA)
gets the input of Process ID (Pi)

and Arrival Time (ATi).
Step 2: For each process Pi

Begin
Step 2.1: PCA finds out any other process

overlaps with the Arrival Time
(ATi) of Process Pi

Step 2.2: If there is an overlap then, it will
be put up in the same set Si by the

PCA.
Step 2.3: Else (no overlap), then another

set Si is framed by PCA.
Step 2.4: Repeat steps from 2.1 to 2.3 until

no more process in the list.
End

Step 3: PCA obtains the different set of
processes S1 to Sn and assigns

every process Pi from set Si to an
Agent Ai.

End

Algorithm for Graph Coloring:
For every new set Si perform the following
operation:
Agent_Graph_Coloring (Si)
For each Agent Ai from set Si
Begin
Step 1: A Vertex Coloring Agent (VCA)

assigns any random color for the
first Agent Vertex (AV1).

Step 2: From each set Si process is taken
and colored with some random
color.

Step 3: Repeat the coloring method with
a constraint that no adjacent
process is colored with the same
color.

Step 4: Repeat the same method for all
the Agent Vertex in each set Si for
all processes Pi to Pn.

Step 5: Every color is represented as a
different core in HMC system.

End

Process Scheduling in Heterogeneous Multicore System using Agent based Graph Coloring Algorithm

8452

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C6410098319/2019©BEIESP
DOI: 10.35940/ijrte.C6410.098319
Journal Website: www.ijrte.org

Photo

Fig.7. Processor utilization in heterogeneous multicore
system using agent based graph coloring algorithm

V. CONCLUSION

The proposed methodology of agent based graph coloring
algorithm is a simplified and powerful mechanism for
thread scheduling in heterogeneous multicore system.
From the evaluation results we proved that as and when the
number of cores are increased, then the utilization of the
cores are 50% more than the existing scheduling algorithm
since we considered the arrival time of the process for the
evaluation. a conclusion our new agent thread assignment
algorithm eliminates the complexity of the hardware and
improved the CPU utilization to the maximum level. The
average waiting time of the process is tremendously
reduced in the proposed novel algorithm.

REFERENCES

1. S. Labed, A. Kout, S. Chikhi, "Solving the graph b-coloring problem
with hybrid genetic algorithm", 3rd International Conference on
Pattern Analysis and Intelligent Systems (PAIS) Algeria, October
2018.

2. Drira Kauther, Dekar Lyes, Kheddouci Hemamache, "A
Self-Stabilizing (delta+ 1)-Edge-Coloring Algorithm of Arbitrary
Graphs", International Conference on Parallel and Distributed
Computing Applications and Technologies PDCAT, pp. 312-317,
2009.

3. M. Jakovac, S. Klavzar, "The b-chromatic number of cubic
graphs", graph Combin., vol. 26, pp. 107-118, 2010.

4. Wang Xiuhong, Qiao Qingli, "Solving Graph Coloring Problems
Based on a Chaos Nueral Network with Non-monotonous Activation
Function", Fifth International Conference on Natural Computation
ICNC, vol. 1, pp. 414-417, 2009.

5. A. El Sahili, H. Kheddouci, M. Kouider, M. Mortada, "The
bAchromatic number and f-chromatic vertex number of regular
graphs", Discrete Appl. Math., vol. 179, pp. 79-85, 2014.

6. S. Cabello, M. Jakovac, "On the b-chromatic number of regular
graphs", Discrete Applied Mathematics, vol. 159, pp. 1303-1310,
2011.

7. F. Maffray, A. Silva, "b-colouring outerplanar graphs with large
girth", discrete Math, vol. 312, pp. 1796-1803, 2012.

8. D. Francis Xavier, "b-Chromatic Number of Line Graphs of Certain
Snake Graphs", International Journal of Computing Algorithm, vol.
03, pp. 700-703, February 2014.

9. R. Javadi, B. Omoomi, "On b-coloring of the Kneser graphs", Discrete
Math., vol. 309, pp. 4399-4408, 2009.

10. D. Gaceb, V. Eglin, F. Lebourgois, H. Emptoz, "Robust Approach of
Adress block Localization In Business Mail by Graph Coloring", The
international Arab Journal of Information Technology, vol. 6, july
2009.

11. S. Shaebani, "On the b-Chromatic Number of Regular Graphs without
4-Cycle", Discrete Applied Mathematics, vol. 160, pp. 1610-1614,
2012.

12. M. Kouider, M. Zaker, "Bounds for the b-chromatic number of some
families of graphs", Discrete Math., vol. 306, pp. 617-623, 2006.

13. Muneeswari.G, Shunmuganathan K. L, “A Novel Hard-Soft Processor
Affinity Scheduling for Multicore Architecture using Multiagents”

European Journal of Scientific Research, Vol.55 No.3, pp.419-429,
2011.

14. A. Puthussery, I.S Hamid, A. Anitha, “An equitable antimagic labeling

of graphs: Algorithmic Approach”, International journal of Computer

Sciences and Engineering, Vol 7, Issue5, pp: 846-851, 2019.

AUTHORS PROFILE

Dr.G.Muneeswari is working as an Associate Professor
in the department of Computer Science and Engineering,
CHRIST (Deemed to be University). She has more than
20 years of teaching experience in various institutions.
She has more than 50 publications and her research area

 focused on scheduling in multicore system.

Fr.Antony Puthussery is working as an Assistant
Professor in the department of Science and Humanities
and campus director in CHRIST (Deemed to be
university). He has many research publications and his
area of research is inclined towards graph theory and

 mathematical modeling.

