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 
Abstract: Numerical analysis of surface plasmon behaviour is 

performed on graphene surface supported on different dielectric 
medium and with varying graphene chemical potential. The 
dielectric medium of graphene is varied from free standing 
graphene to rigid SiO2 wafer substrate to flexible PMMA polymer 
for diverse graphene plasmonics applications. The dispersion 
relation, propagation length and penetration depth of graphene 
surface plasmons are computed and analysed for the different 
dielectrics. The results show that graphene plasmonic behaviour 
in the various dielectrics highly depends on its chemical potential, 
the excitation input frequencies and produces surface plasmons 
with high field localization and low losses. This study of 
plasmonic behaviour on flexible dielectric opens up application of 
graphene plasmonics in the field of flexible optoelectronics. 
 

Keywords: Graphene plasmonics, Chemical potential, 
dielectric medium, flexible dielectric. 

I. INTRODUCTION 

Surface plasmon polaritons (SPP) on metal-dielectric 

interface are interesting on account of their high field 
enhancement and localization [1]. Even though many 
different applications have been demonstrated [2-5], the high 
losses and absence of tunability, limits the applications for 
metal based plasmonics [6].  

Graphene 2D material, which is known to possess good 
electrical, optical and mechanical properties [7-9], has 
recently, been shown to be a potential candidate for plasmonic 
applications [10]. The existence of plasmons in graphene in 
both TM and TE mode of electromagnetic field as well as 
their tunable nature makes graphene an important material for 
upcoming plasmonic applications [11], [12]. Since, the 
generation of surface plasmons is a combined effect of a 
negative and positive refractive index medium, the dielectric 
material used will also have a contributing effect [13]. Owing 
to the flexible nature of graphene [14], the behaviour of 
graphene plasmons on flexible dielectric substrates was a 
motivating factor in this study. 

In this work, the graphene SPP behaviour is analysed as a 
function of different graphene doping and dielectric substrate 
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medium such as flexible Poly (methyl methacrylate) (PMMA) 
polymer and rigid SiO2 substrate. The dispersion relation, 
propagation length and penetration depth of graphene surface 
plasmon on different dielectric medium are numerically 
computed for varying permittivity of graphene in the THz 
frequency range.  

II.  METHODOLOGY 

An infinite single-layer graphene, placed on a different 
dielectric medium like air, PMMA polymer (n = 1.49) and 
SiO2 (n = 2) substrate, is considered for the study of the 
Graphene surface plasmon polaritons (GSPP). The top 
medium is assumed to be air in all the three cases. The 
electronic model of graphene is defined by calculating 
dynamic conductivity of graphene from Kubo formula in 
terms of the frequency (ω), chemical potential (µc) and 
relaxation time (τ) [15]. This complex surface conductivity of 
graphene consists of both intraband and interband 
conductivities. The bulk conductivity of graphene is obtained 
as (, µc, τ)/ where ∆ the thickness of graphene is assumed to 
be 1 nm. Thus, the permittivity of 2D graphene is obtained as 
εgr=1+i(,µc,τ)/ε0 [16], where ε0 is free space permittivity.  

The dispersion relation of GSPP on different dielectrics is 
calculated by ksp ≈ iε0(εr+1) /(, µc, τ), where εr  is the 
dielectric constant of the medium [17]. SPPs travel along the 
surface of graphene and decay in both perpendicular and 
horizontal directions. The propagation length and penetration 
depth are calculated by spp=1/2Im[ksp]  and i = spp/2, 
respectively, and where spp is SPP wavelength i.e. 
2/Re[ksp][6].    

III. RESULT AND DISCUSSIONS 

A material is considered to be a plasmonic material, when 
the real part of dielectric constant is a negative quantity and 
the imaginary part of εr is very less than the negative real part, 
in order to accomplish low losses [18]. Figure 1 shows the 
variation in permittivity computed for freely suspended 
graphene as a function of THz frequencies with different 
doping level (µc = 0.2 and 0.6 eV). At lower frequencies, the 
real part of permittivity is < 0 and the imaginary part is lower 
in magnitude in comparison to the absolute magnitude of the 
real part of permittivity.  This condition allows surface 
plasmons to propagate on graphene substrate. As the µc of 
graphene is changed from 0.2 to 0.6 eV, the frequency range 
at which the plasmonic conditions is satisfied is much higher 
viz. ~ 25 - 250 THz in comparison to the case of lower 
chemical potential of graphene i.e. ~ 25 - 75 THz. 
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 This highlights that the graphene plasmonic behaviour 
depends strongly on its chemical potential and input 
excitation frequencies. When graphene is placed on a 
dielectric medium, the effective transverse permittivity is 
dependent on the relative permittivity of dielectric medium 
and the graphene permittivity as given by the relation εeff = εr 
+ i(,µc,τ)/ε0 [19]. 

 The interaction of light with graphene surface is important 
to understand the propagating surface plasmon (SPP) and 
localized surface plasmon (LSP) on graphene. 

 
Fig. 1. Plot of variation of real and imaginary part of 
relative permittivity of graphene as a function input 

excitation frequencies for μc= 0.2 and 0.6 eV. 
 
The dispersion relation of graphene plasmons on different 

dielectrics is shown in figure 2. In graphene, the region where 
the wave vector shows a nonlinear relationship with input 
frequencies corresponds to SPP and at higher frequencies the 
wave vector shows a saturation, which is related to the 
localization of surface plasmons. 

 
Fig. 2. Dispersion relation of graphene surface plasmons 
as a function of dielectric medium at µc = 0.6 eV. Inset 

shows the dispersion relation at µc = 0.2 eV. 
 
In the nonlinear region, at a particular input excitation 

frequency, the GSPP wave vector shows an increase for a high 
refractive index dielectric. Inset in figure 2 shows the 
dispersion relation at lower chemical potential which points to 
lower surface plasmon frequencies. In the saturation region, 
the surface plasmon frequency SP slightly reduces as 

refractive index increases. Hence, the dielectric property of 
medium and the chemical potential of graphene influences the 
frequency at which the SPP are generated as well as the 
confinement of surface plasmon in graphene. 

 
Fig. 3. Plot showing variation of graphene plasmon 

propagation length as a function of input frequencies for 
different dielectric mediums and chemical potentials (0.2 

eV - dashed line; 0.6 eV - solid line). 
 

It is important to study how the graphene surface plasmon 
decay in the longitudinal direction, parallel to the graphene 
surface. Hence, the propagation length of graphene surface 
plasmons was computed as a function of the input excitation 
frequencies.  Figure 3 shows the propagation length of 
graphene surface plasmon on different dielectric medium with 
different graphene chemical potential. It is clear that the 
presence of dielectric medium and a change in chemical 
potential can greatly control the propagation length. As the 
chemical potential increases, the propagation length on 
graphene dielectric interface also increases. With increase in 
refractive index of the dielectric medium, the propagation 
length decreases. At higher input excitation frequencies, as 
SPPs become LSPs, the propagation length decreases.  

 
Fig. 4. Plot showing the effect of variation of dielectric 
mediums and chemical potentials (0.2 eV - dashed line; 

0.6 eV - solid line) on graphene plasmon penetration 
depth as a function of input frequencies. 

Penetration depth of surface plasmon implies the distance 
at which the excited plasmons’ electric field losses 
perpendicular to the graphene dielectric interface reduce to 
1/e of the electric field intensity 
at the excitation point.  
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Accordingly, figure 4 shows a decrease in the penetration 
depth of graphene surface plasmons as a function of increase 
in input excitation frequency. With higher chemical potential, 
the penetration depth also increases.  

The penetration depth decreases as the dielectric constant 
of medium increases, indicating the surface plasmons show 
better confinement and lower losses. 

IV. CONCLUSION  

In this work, the behaviour of graphene surface plasmons 
has been analysed for different dielectric mediums and 
varying graphene chemical potentials. At higher chemical 
potential, the graphene surface plasmons are generated over a 
wider range of input excitation frequency when compared to 
the case of lower graphene chemical potential. The dispersion 
relation shows that at particular lower frequencies, the 
propagating surface plasmon wave vector shows an increase 
for a high refractive index dielectric. Both dielectric constant 
of medium as well as the chemical potential affect the surface 
plasmon frequency, with sp being lower for lower chemical 
potential and higher dielectric medium.  

The distance over which the graphene surface plasmon 
decay in the longitudinal direction viz. the propagation length 
of GSPP, increases with increasing chemical potential and 
decreases with increase in the refractive index of dielectric 
medium. In contrast, the decay of GSPPs in a direction 
perpendicular to the graphene dielectric interface viz. 
penetration depth shows a decrease with increase in input 
excitation frequency, chemical potential and dielectric 
constant of the medium. This results in better confinement and 
lower losses for GSPPs. These results show that surface 
plasmon enhancement with high field localization obtained 
for graphene on PMMA polymer is comparable to SiO2 
substrate, which makes graphene is a good candidate for 
flexible optoelectronics applications.  
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