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 
Abstract: In practice, drying is one of the most common food 

preservation technique. At microscopic level, drying is not merely 
a moisture removal process and it involves complex heat and mass 
transport phenomena and depends on material properties. So 
mathematical models in drying are important for process design, 
optimization and energy integration. Therefore, in the present 
study, first theory of drying is elucidated concisely. Further, 
general modelling approaches and commonly used thin layer 
drying equations are presented. Later, method for evaluation of 
appropriate thin layer drying model for a feedstock is explained. 
Effective moisture diffusion coefficient (Deff) and activation 
energy (Ea) calculations methods are also presented.  

Keywords: Drying kinetics, Thin-layer drying modelling, 
Statistical techniques, Effective moisture diffusivity, Activation 
energy.  

I. INTRODUCTION 

Drying is the traditional method employed at one stage or 

another in almost all industries and is an inevitable in food 
processing industry as it increases shelf-life of the product and 
facilitate its handling. Besides, drying also aids in obtaining a 
desired physical form of the product, reduces its storage cost 
and its freight transport cost [1]. Drying is merely a moisture 
removing technique, yet it is an intricate process which 
requires knowledge of analysis methods from 
thermodynamics, heat, momentum and mass transfer, porous 
media, psychometrics and material science [2]. Hence, 
mathematical modelling of drying techniques, assists dryer 
design and optimization [3].  

Thin layer drying equations give good results and are 
crucial mathematical modelling tools of drying. But to utilize 
this thin-layer equations, drying rate curves are to be 
measured experimentally [4]. Fig.1 shows a typical drying 
curve which is depicted between moisture ratio and time for a 
feedstock in the presence of any drying medium. First, 
feedstock heats up and consequently drying rate steadily 
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increases. Later, water transport through the solid is 
exceptionally expeditious to keep conditions saturated at its 
surface and hence constant drying rate is perceived in this 
stage.  

 

 
Fig. 1. A typical drying curve for a feedstock [53]. 

Surface diffusion is the dominant mechanism therefore 
external factors such as drying air properties plays a major 
role in this stage [5]. At the last rung of this stage, dry spots 
are formed over the surface of the feedstock indicating critical 
moisture content in the product. Later, First falling rate drying 
period commences with dominating liquid diffusion. 
Therefore, in this stage internal conditions viz., moisture 
content, product’s physical properties play an important role 
[6]. Finally, second falling rate period begins with 
evaporation of entire liquid from the surface. In this stage, 
vapor diffusion is the governing drying mechanism [7]. 
In the present work, thin layer drying fundamentals are 
explained and generally employed thin-layer drying models 
are presented. However, the main agenda of the paper is to 
interpret the method for evaluation of best suited thin layer 
drying model for a feedstock. In addition, estimation of 
transport properties viz., Deff and Ea values for a feed stock are 
presented.  

II. MATHEMATICAL MODELING OF DRYING 

Drying procedures can be mathematically modelled with 
distributed and lumped parameter models. Both the models 
assess parallelly heat and mass transfer during drying. But, 
precise estimation of drying rate at any position after a certain 
recess of time can be obtained by using distributed models as 
shown in Eqs. (1) and (2) [8].  
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The main difference between them is, distributed parameter 
model considers the effect of both internal and external heat 
and mass transfer resistance, whereas influence of internal 
resistance is neglected in lumped parameter models as 
illustrated in Eqs. (3) and (4) [9]. 
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Equations (3) and (4), can be rearranged into Eqs. (5) and (6)  
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where, for planar shapes 0  ; for polar geometries 1   
and for spherical configuration 2   [10]. 
Akpinar [11], dried the product samples as single thin layer to 
maintain thermal equilibrium between the product samples 
and its prevailing ambient. Therefore, the influence of 
temperature variation can be neglected throughout the drying 
process. Unlike distributed models, these thin layer drying 
models are widely applied because it requires less data and 
simple in usage. These equations can be categorized into 
following three models. 

A. Theoretical Models 

These can be applied to drying process under all 
circumstances. But these models can cause significant errors, 
as they are based on many assumptions such as homogeneous 
and isotropic material, infinitesimal external resistance, 
insignificant temperature gradients and shrinkages. They are 
attained from Fick’s II law of diffusion. It considers only the 
influence of internal resistance to moisture transfer [12]. Then 
Eq. (5) which describes the mass transfer can be solved using 
following conditions: 

( , 0) , 0M x M ati    

(7) (0, ) ,M M at x Le    

(0, ) , 0M finite at x    

The solution of Eq. (5) for slab and sphere is presented in Eq. 
(8) and for infinite cylinder in Eq. (9) [13]. 
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 1 , 2 are geometric constants as indicated in Table 1. 

Table- I: Values of 1 , 2  

Geometry/ 
Shape 1  2  

Infinite slab 

8
2


 2

4L  

Sphere 
6
2


 2

4r  

3D finite slab 

3
8
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 
 
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*

M can also be determined based on the external conditions 
as in Eqs. (9) and (10) [14].  
For constant RH, 

* M MeM
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

 (10) 

For varying RH, 
* M

M
Mi

  (11) 

B. Semi-theoretical Models 

These models consider only the external resistance to 
moisture transport at the interface of feedstock and air [15]. 
They are obtained either from modified Fick’s II law of 

diffusion or from Newton’s law of cooling. They are simple 

and need only fewer assumptions [16]. Table 2, represents 
semi-theoretical drying models developed by various 
researchers for different conditions. 

Table- II: Semi-theoretical models 

Model Name Drying Equation Reference 

Models analogues with Newton’s law of cooling 

Lewis 
(Newton) 

model 

 * k
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e
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e
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2*

e

n
k
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  

 
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[21] 

Models analogues to Fick’s II law of diffusion 
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and Pabis 
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exponential 
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C. Empirical Models 

These models also take only the external resistance to 
moisture transfer into account. They don’t have any physical 
interpretation and mainly dependent on the experimental 
conditions [33]. Table 3 indicate various empirical drying 
models. 

Table- III: Empirical drying models 

Model Name Drying Equation Reference 

Thompson 
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Model Name Drying Equation Reference 
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Aghbashlo 
model 

  1 21*
e
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M
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III. METHOD FOR DETERMINATION OF 

APPROPRIATE THIN LAYER DRYING MODEL 

Appropriate thin-layer drying model for any feed stock can be 
determined using statistical techniques. To find the 
connection between the variables linear and non-linear 
regression analyses are very important. Thin layer drying 

equations require *
M vs   curves. Generally, *

M data is 

plotted against   and regression analysis is conducted with 
the selected models to estimate the constant values of the 
drying model. Different statistical techniques are employed to 
check the validation of these models [42-46].  
The basis for choosing the suitable model that define the 
drying of a feedstock is the correlation coefficient (r). Besides 

r, 
2

  and RMSE are also applied to determine the 

appropriate model. The maximum r and minimum 
2

  and 

RMSE values are required to analyse the goodness of fit 

[47-48]. Eqs. (12) to (17) are used to calculate r, 
2

 , RMSE, 

P, and MAPE. 
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IV. TRANSPORT PHENOMENA OF DIFFUSION 

A. Effective Moisture Diffusivity 

Diffusion in solids is an intricate phenomenon during 
drying as it involves molecular diffusion, capillary flow, 
Knudsen flow, hydrodynamic flow and surface diffusion. Eqs. 
(3) and (4) combines all these phenomena with a lumped 
parameter model concept and termed as effective moisture 
diffusivity. Henderson and Pabis model are derived for longer 

drying times and the constant values of Deff . Eq. (18) is 

obtained from a simple arrangement. 

   *
ln lnM a k   (18) 

where k is attained from Eq. (19) 
2

2

Deff
k




   (19) 

where 2  is shown in Table I.  

The Deff usually gets influenced by internal factors like 

feedstock temperature and its moisture content. The same is in 
accordance with the thin layer concept assumptions [49]. It is 

important to estimate Deff for describing the drying 

characteristics.  

B. Activation Energy 

The influence of temperature on Deff is usually defined by an 

Arrhenius equation [50]. 

 
310

273.15
e

aE

R T
D Deff o

 
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  (20) 

The sensibility of diffusivity against temperature is 

obtained Ea value. The large value of Ea  indicates more 

sensibility of Deff  to temperature [51].  

For microwave drying [52], 

e

a

m

E m

P
D Deff o

 
 
 

  (21) 

V. CONCLUSIONS 

In the present work, general approach for mathematical 
modelling of drying is explained. Also, the most commonly 
used thin layers drying equations are presented. Method for 
assessment of appropriate thin layer drying model for a 
feedstock is elucidated. The effective moisture diffusion 
coefficient and activation energy calculation methods are 
interpreted.  

The following conclusions can be drawn from this study: 
1. A technique to propose a novel mathematical model that 

describe the drying kinetics of a feedstock is explained. 

2. The analytical solutions for fractional moisture ratio of 
infinite slab, infinite cylinder and sphere geometries of 
feedstock are determined. 

3. The maximum r and the minimum 
2

  and RMSE values 

are essential to assess the best suited model to define the 
drying phenomenon of a feedstock.  

4. Temperature strongly influences the effective moisture 
diffusivity of a product. 

NOMENCLATURE 

Deff  : Effective moisture diffusivity, 2
m s  

oD  : Arrhenius factor, 2
m s  

aE  : Activation energy, kJ mol  

g, h : 
Drying constant obtained from 
experiments, s-1  

0J  : Bessel function roots 

K : Drying constant, s-1   

,11 22K K

 
: Phenomenological coefficients 

,12 21K K

 
: Coupling coefficients 

L : Sample thickness, mm  

, ,1 2 3L L L

 
: Dimensions of finite slab, m  

m : Sample amount, g  

M : 
Local moisture content, kgw/kgds or (% 
dry basis) 

Me  : 
Equilibrium moisture content (% dry 
basis)  

Mi  : Primary moisture content (% dry basis)  

M


 : Moisture content at time   (% dry basis) 

*
M  : Moisture ratio fraction 
*
exp,M i

 
: ith experimental *

M value 

*
,M pre i

 
: ith predicted *

M value 

n : Empirical model constant 
P : Pressure, kPa  

Pm : Microwave output power, W 
r : Correlation constant 
R : Universal gas constant, kJ/mol  

RH : Relative humidity 
RMSE : Root mean square error 

T : Temperature, ° C 
  : Drying time, s  
x : Diffusion path, m  
2

  : Reduced chi-square 

  : Thermal diffusivity 2
m s  

  : Shape parameter 
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,1 2   : Geometric constants 
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