
International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1190

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

Abstract: Foreseeing the seriousness/severity of bugs has been
established in former research study in order to recover triaging
and the process of bug resolution. Therefore, numerous
prediction/classification methodologies were developed
throughout the years to give an automated reasoning over the
seriousness classes. Seriousness or severity is a significant trait of
a bug that chooses how rapidly it ought to be measured. It causes
designers to comprehend significant bugs on schedule. Though,
manual evaluation of severity is a dreary activity and could be off
base. This paper comprises of using the text/content mining
together along with the use feature selection and bi-grams to
improve the order of bugs in six classes. In the proposed
methodology the features are refined by the use of convolution
layers. Here, the process of convolution-based refining indicates
mapping of the features utilizing non-linear methods of all the
classes as compared to the existing methodologies.

Keywords : Bug Severity, Bug Prediction, Bi-grams

I. INTRODUCTION

In software development improvement different types of
resources are considered for bug reporting. A Software bug can
be delegated error, flaw, failure or fault in any framework
because of which framework carry on in an inappropriate way,
may give outcomes about which are most certainly not expected
or wrong outcomes. Different courses in which a bug can
emerge are either because of flaws in source code, outlining of
program or because of operating systems or additionally can be
delivered by compiler errors [1]. The consequences of bugs
finished up to be dangerous, from different occurrences in true.

Manuscript published on 30 September 2019
* Correspondence Author

Sarbjeet Kaur*, Department of Computer Science, NITTTR,
Chandigarh, India. Email: sarbjeet.cse@nitttrchd.ac.in

Maitreyee Dutta, Department of Information Management and
Co-ordination Unit, Email: d_maitreyee@yahoo.co.in

© The Authors. Published by Blue Eyes Intelligence Engineering and
Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1. Bug classifications on severity and priority basis
[1]

A. Types of Bugs

For advancement of software quality it ought to be guaranteed
that the bugs ought to be recognized and to be taken care in
their beginning times amid software advancement [2, 11].
Software quality can be influenced because of following sorts
of bugs:
1. Arithmetic Bugs: The bugs which are caused by
infringement of arithmetic tenets. Case, isolate by zero.
2. Syntax Bug: The bugs which are caused by the
infringement of the linguistic structure guidelines of
programming dialect. Illustration, utilizing equivalent to
administrator rather task administrator.
3. Logic Bug: The bugs which are caused by utilizing
incorrectly logic and yield is not anticipated.
4. Resource Bug: The bugs which are caused by in suitable
utilization of assets. Illustration, un instated variable.
5. Multithreading Bug: Example is Deadlock, for
multithreading bug.

B. Bug Severity

It is the degree to which the error can influence the software.
As such, it characterizes the effect that a given error has on the
frame. For example: if an application or page fails when a
remote connection is clicked, for this situation touching the
remote connection of a client is uncommon, however, the
effect of the destruction of the use is serious. Then, the
severity is high but the need is low [1, 3, 4]. For the most part,
the bug reporter does not know how to handle severity, so the
standard is assigned in the severity value and discussed
below.
1. Critical: The bug that outcomes in the end of the entire
framework or at least one part of the framework and causes
broad defilement of the information.

Improved Framework for Bug Severity
Classification using N-gram Features with

Convolution Neural Network

Sarbjeet Kaur, Maitreyee Dutta

mailto:d_maitreyee@yahoo.co.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.C4292.098319&domain=www.ijrte.org

Improved Framework for Bug Severity Classification using N-gram Features with Convolution Neural

Network

1191

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

The fizzled work is unusable and there is no worthy option
strategy to accomplish the required outcomes then the
severity will be expressed as critical.
2. Major: The bug affects the main functionality or the main
data. It has an answer, yet it isn't clear and it is troublesome.
For instance, a component isn't useful from of a module yet
the undertaking is possible if 10 indirect complicated steps are
followed in another module/s.
3. Moderate: The bug that does not bring about the end, but
rather makes the framework deliver mistaken, fragmented or
conflicting outcomes then the severity will be expressed as
moderate.
4. Minor: The bug that does not cause the end and does not
harm the convenience of the frame and the coveted results can
be acquired without effort when solving the bugs and then the
severity is expressed as minor [5-7].
5. Cosmetic: The bug that is identified with the improvement
of the framework where the progressions are identified with
the look and feel of the application then the severity is
expressed as cosmetic.
Severity is also denoted as at different levels shown in
figure.2.

 If severity is S1 that it is Critical
 If severity is S2 that it is Major
 If severity is S3 that it is Minor
 If severity is S4 that it is Trivial

Fig. 2. Bug Severity Level [2]

C. Bug Report Format

The below given table represents the contents of the bug
reports. The fields and their description show their value.
These content gives the information related to the bug in
detail.

Table 1: Bug Report Format

Field Description

Summ Summary: This field contains a short description and
contains only few words.

Desc Description: This field contains a detailed explaination
of the bug and information like how bug is reproduce
and error in the output when the bug will take place.

Prod Product: It is the product i.e. bug affected.
Comp Component: It is the component affected by bug.
Sev Severity: It is basically the level which is assigned to the

bug according to its impact on the software. The
severity level for the bugs are following:

 Critical
 Major
 Moderate
 Trivial

Severity of bug is an important factor in deciding the priority
of the bug because the number of bugs is usually high. Bug is
basically a description in which software engineers mention
the position of fault in the software system [8-10]. Nowadays
different types of the bug tracking system are used to
encounter the bug by using Jira and Bugzilla bug tracker.
While reporting the bug user also mention the description
related to the bug by filling the form, it helps the development
team resolve the reported bug. The below given figure
represents the main function of severity shown in figure.3.

Fig. 3. Severity and its functions [4]

D. Different Bug Prediction Algorithm

The huge number of techniques and algorithms are developed
for the bug severity prediction by the researchers but there are
also some issues related to them that are focused for the future
research. Here some to techniques are discussed in brief that
are mostly used by the researchers in traditional approaches
according to their data and bug reports.
 Naïve Bayes Classification
It is a classifier which gauges the likelihood of contingent
class by utilizing presumption that every one of the qualities
are restrictively autonomous. In such type of classifier,
contingent likelihood is determined for each term of the class.
After the estimation of probabilities another classification
report is produced for each class of each term happened in the
archive.
 K-nearest neighbour
The algorithm based on k-NN contrast each report in dataset
placed within the provided report and after that discover the
comparability in the current report. The report-based
similarity is estimated by utilizing any distance or separation
measure. The classification of data point depends on the class
labels and neighbors. Regardless, information point have
more than one mark new report will be allocated to most of
the holdup class. In this type of algorithm, k is usually
presents the neighboring points for instance k=4 and then it
focusses over the fact that k has four closest points and it
discover most of the class.
 Naïve Bayes Multinomial
The multinomial Naïve Bayes algorithm is enhanced version
of nave Bayes and it considers the weight during the
calculation of conditional probability. This algorithm also
provides the length of document and terms occurrence in the
different documents. For this purpose TF-IDF measure is
used that is term frequency-inverse document frequency.
 Support Vector Machine
SVM is a statistical and mathematical technique and gives the
effective result on the field of recognition and classification of
objects.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1192

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

This techniques also gives effective result in the field of text
mining and avoid the problem of dimensionality because it
works on high dimensions of data [12, 13]. The report sets are
separated in the given categories which depends upon the
hyperplane having maximum margin. The distance measured
among the hyper planes are maximized to separate the
testimony established into binary kind of classes.

E. Pros and Cons of Bug Severity Prediction

1 Pros
 Helps to find the bugs and helps to fixed them
 It allow repository of documents which helps the

trouble shooter later in related issue.
 Helps in early detection of bugs which reduces the

failure rate of the software
2 Cons

 Some associations utilize numerous apparatuses to
track deformities of various kinds, and those
instruments regularly don't coordinate well with each
other.

 Bug opening procedure is a convoluted assignment
and devours additional time.

 Complications can emerge out of perplexity over
depictions, absence of data, devices that are
excessively awkward and require compulsory fields
for which the client doesn't have the appropriate
responses, and trouble in revealing.

II. RELATED WORK

Jindal, Rajni et al. [1] presented a defect severity prediction
model by minig the software reports. This model has ability to
predict the severity level of the bug in the bug reports. The
defects reports used in this are from the PITS dataset. This
data set is popular because it is used by the NASA. Data
mining approach is involved to extract the data from the
reports and then used by the prediction model. The concept of
logistic regression, multi-layer perceptron and decision tree is
used in this model. The outcomes of the decision tree is best
among all when it is compared in analysis process.
Heena Singla et al [2]: proposed the bug tracking system
which identifies the bugs. Physical method is different from
software which inputs are accepted and outputs are generated.
Any change in the software is usually requested while
developing any software system. Mainly, the request is related
to software maintenance. The cost of the software is usually
spent on software maintenance. The error tracking system
(BTS) is manually assigned to a respected developer for
fixation. The main reason for errors is to identify errors that
require instantaneous concentration. The user reports the
errors and assigns their priority to the importance of the error.
However, the field level may not be assigned correctly by the
user because its assumption regarding the importance of an
error may vary from another user.
Kwanghue Jin et al [3]: proposed a new programming
frameworks which has been produced constantly, and utilized
as a part of a multiplicity of fields. Along these lines, bugs
ought to be settled accurately to their seriousness levels since
they have isolate seriousness levels. Subsequently, rectify
expectation of bug seriousness is required for effective
programming improvement and support that designers can
know which bug requires to be settled promptly. Prior

investigations utilized just content data of the bug report for
their forecast systems. In this manner, so as to build up the bug
settling, initialize a solid procedure of bug seriousness
expectation that additional the Description and Reporter
fields since bug columnists record content qualities of the
report.
 Zhou, Yu, et al. [4] proposed a multi-association approach by
consolidating content extraction and data mining techniques
to modernize the determining procedure. The primary stage
uses content-based extraction procedures to disect the
principle bug report parts and request them as indicated by
three degrees of likelihood. Features and some different
features of the bug reports are then consolidated into the
understudy machine during the subsequent stage. Data
Joining Strategies are utilized to interface the two stages.
Relative testing with past surveys of comparable data - three
enormous scale open source ventures - dependably
accomplish a decent redesign, have accomplished their best
outcomes in terms of its execution. Extra observational audits
of seven other understood open source systems affirm the
discoveries.
Hans Hansson et al [5]: presented multicore and other
parallel designs, there is an expanded necessity for adequate
and viable treatment of programming executing on such
structures. A huge angle in this setting is to comprehend the
bugs that happen because of parallel and simultaneous
execution of programming. Testing and troubleshooting
simultaneous programming are looked with the different
difficulties. Creating simultaneous programming need
designers to monitor all the plausible correspondence designs,
which create from an extensive number of likely interleaving
or simultaneously covering executions that can happen among
particular execution strings through using the common
memory.
Fairuz Amakina Narudin et.al. [6] proposed an alternative
response for surveying bug discovery using the irregularity
based approach with machine learning classifiers. Among the
various framework action incorporates, the four courses of
action picked are principal information, content-based,
affiliation based, and time-based. The methodology utilizes
two datasets: private (self-aggregated) and open
(MalGenome). In light of the assessment happens as
expected, both the Bayes framework and unpredictable forest
classifiers passed on progressively exact readings, with a
99.97% authentic positive rate rather than the multi-layer
perceptron with just 93.03% on the dataset named
MalGenome dataset.
Mohd Faizal Ab Razab et.al. [7] intended to fill in that hole
by exhibiting a thorough assessment of bug explore hones. It
starts by taking a gander at a pool of more than 4000 articles
that are distributed in the vicinity of 2005 and 2015 in the ISI
Web of Science database. Utilizing bibliometric analysis, this
paper examines the examination exercises done in North
America, Asia, and different landmasses. This paper played
out a point by point analysis by taking a gander at the quantity
of articles distributed, references, inquire about the region,
catchphrases, establishments, terms, and creators.

Improved Framework for Bug Severity Classification using N-gram Features with Convolution Neural

Network

1193

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

A synopsis of the examination exercises proceeds by posting
the terms into an order of bug location framework which
underlines the essential range of bug explore. From the
analysis, it was inferred that there are a few huge effects of
research exercises in Asia, in contrast with different main
lands. Specifically, this paper talks about the quantity
of papers distributed by Asian nations.

Kwanghue Jin et al [8]: created new programming
frameworks ceaselessly, and are utilized as a part of a
multiplicity of fields. Along these lines, bugs ought to be
settled effectively to their seriousness levels since they have
isolate seriousness levels. Henceforth, revise forecast of bug
seriousness is required for effective programming
advancement and support that engineers can know which bug
requires to be settled instantly. Prior examinations utilized
just content data of the bug report for their expectation
systems. Consequently, to build up the bug settling, they
initiate a dependable procedure of bug seriousness forecast
that additional the Description and Reporter fields since bug
correspondents record content qualities (Summary and
Description) of the report.
Fabio Palomba et.al. [9] discovered about the propensity to
bug to construct a particular bug prediction that is
demonstrated for range classes. In particular, they evaluate
the commitment of a measure of the severity of the odors of
the code (ie, the intensity of the code warning) by adding it to
existing bug prediction models and observing the
consequences of the new model against the pattern shown.
The results show that the accuracy of an error prediction
display increases by including the code warning intensity as
an indicator. They also evaluate the actual pick-up given by
the intensity list in terms of alternative measures in the model,
counting those used to record the intensity of the code
warning. They see that the intensity list is much more vital
when compared to the different measurements used to
anticipate the buggies of the doubtful classes.
Zhou, Yu, et al. [10] proposed a multi-organize approach by
joining both content mining and information mining
procedures to computerize the forecast procedure. The main
stage use content mining systems to dissect the outline parts of
bug reports and arranges them into three levels of likelihood.
The extricated highlights and some other organized highlights
of bug reports are then sustained into the machine student in
the 2nd stage. Information joining methods are utilized to
connect the two phases. Relative tests with past investigations
on similar information—three substantial scale open-source
ventures—reliably accomplish a sensible improvement
finished their best outcomes as far as by and large execution.
Extra near observational analyses on other seven mainstream
open-source frameworks affirm the discoveries. Besides, in
view of the information acquired, they likewise
observationally examined the effect connections between the
fundamental classifiers and different properties of the joined
model. A prototype recommender framework has been
produced to show the appropriateness of their approach.
Yuan Tian et al [11]: presented the concept of multi-factor
analysis for bug report prediction. This work is based on the
machine learning and factors like temporal, textual, author,
and bug reports. These factors are considered as feature and
used for the training of discriminative model using the
classification algorithm. This classification algorithm handles
the imbalanced data and ordinal class. The proposed model

improves the f-measure in the outcomes. Xiaohu Yang et al
[12]: Software bugs are regular in all phases of the product
advancement and upkeep lifecycle. To dealing with the report
of programming bugs, every one of the engineers utilized
following framework in programming bugs. In light of the
most vital of programming bugs, countless systems have been
intended to oversee and decrease the effect of programming
bugs. These systems incorporate bug triaging and designer
suggestion bugs need. In regular bug settling strategy, an
analyzer or a client distinguishes a bug and presents a bug
answer to clarify the bug in bug following frameworks. At that
point, the bug is allocated to a comparing designer to settle.
On the off chance that the bug is settled once, the second
engineer would affirm the fixes, and finally shut the bug
report. Consequently, in specific cases, the whole settling
technique is slowed down because of the presence of a
blocking bug task, copy bug report discovery, bug settling
time forecast, and revived bug expectation.
 Gitika Sharma et al [13]: Software is affecting gigantic
human exercises and its utilization is ascending at an
exceptional rate. On account of increment popular and
diminished in conveyance time giving the surety of value
while diminishing conveyance time is ends up basic.
Subsequently, to guarantee the nature of programming,
different testing strategies are utilized. The product bugs that
are recognized after the sending of programming influence
consistency and nature of the product. Bug following
frameworks (BTS) enable clients and in addition designers to
report these bugs to programming. The detailed bugs in BTS
are analyzed by Triager to process their legitimacy, exactness,
importance, seriousness and furthermore to affirm its trickery
and subsequently are doled out to the pertinent designer to
determine it. Triager is the individual who utilizes his insight
and experience to assess and refine the bugs that are
accounted for.
Jacek Ratzinger et al. [14] Solved the impact of advanced
exercises such as refactoring on software bugs. For a situation
investigation of five open source ventures, we utilized
characteristics of software advancement to foresee bugs in
eras of a half year. They utilize forming and issue tracking
systems to separate 110 information mining highlights, which
are isolated into refactoring and non-refactoring related
components. These components are utilized as a contribution
to arrangement calculations that make prediction models for
software bugs.

III. THE PROPOSED METHOD

A. Proposed Framework
Step 1: Input bug text. This bug test are the bug reports that
are used as input in this methodology. These reports contains
the list of bugs are their cause of occurrence in the previous
system.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1194

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

 Fig. 4. Proposed Framework

Step 2: Pre-processing of bug reports. Pre-processing is a
process in which duplicate data is removed by using the
process of stemming and tokenization. In these processes stop
words removal, has tag removal, and repeated word removal
are performed.
Step 3: The third step followed in this methodology is
extraction of features in two types that are Frequency Features
and Semantic features.
Step 4: Combines the features by Kullbulk Divergence.
Basically this probability function is used to measure the
probability of feature set one is different from the second one.

B. Proposed Methodology

Implementation is the process that turn strategies and plans
into actions in order to accomplish objective and goals.
Following are steps which are used in the implementation bug
severity prediction.
Step1: In the first step, the Bug severity dataset is divided into
two parts. One is the testing phase and the other is the phase of
training. Further, the training Bugs performs the operation of
preprocessing and changes into gray scaled bug in order to
finding the values of pixel.
Step 2: In the second step, the process begins with
initialization of the convolutional part with convolution
window size 3*3 convolution window that mixes the pixels
continuously and further uses stride base convolution padded
by a zero in case of non-availability of any pixel.

Fig. 4. Proposed Flowchart

Step3: In case of third step, pooling of the kernel function is
done as defined in a convolution layer. Out of possible 512
functions, 10 functions are defined in convolution layer.
These 10 type of function results in 10 different answers out
of which the maximum value is selected by using max-pooling
layer.
Step4: After the process of max-pooling, resultant matrix
further applied with convolution-based window size 3*3 and
10 kernel function. Thereby, this process results in a feature
vector. Feature vector and class of Bugs basically learn the
process by using Softmax.

IV. RESULT ANALYSIS

In the experimental setup, a dataset of (Zhou, Yu,
Yanxiang Tong, Ruihang Gu & Harald Gall, 2016) was
used with various classes shown in Table 2. The dataset
consists of bug reports from five different open recourse’s

that are Eclipse, Mozilla, JBoss, Firefox and OpenFOAM.

Improved Framework for Bug Severity Classification using N-gram Features with Convolution Neural

Network

1195

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

Table2.Comparison of Proposed and Existing

The results were evaluated by using existing SVM and
proposed feature weighting CNN approach with bi-gram
and TF-IDF applications using K-L Divergence. These bug
reports were cut across into the testing and training dataset
based on the 10-cross-validation mechanism. Based on the
above methodology the series of experiments were
performed to analyze the approach using evaluation
metrics like Recall, Precision, F-measure and Accuracy are
used. The different values were tested for CNN
parameters. The result demonstrates that the best execution
is accomplished by setting the parameters to values
appeared in (Table 2).

Fig 5: Comparison of Proposed (CNN) and

Existing(SVM) in different dataset
Initially, the proposed CNN was applied on bug reports of
five projects shown in (Table 2). The basic aim of the
proposed algorithm is to improve the performance of existing
SVM by Convolution the features of a dataset.
Figure 4.6 shows the comarision of precision on the proposed
and the exisiting work on different opensource datasets. It can
be noticed that the CNN approach give us less loss than the
SVM .

Fig 6: Comparison of Proposed (CNN) and Existing

(SVM) in different dataset of precision

Fig 7: shows the comparison of Recall on the proposed work
and the existing work. In case of Recall CNN shows the high
results. JBoss using CNN show again high performance but
others also increase there bug prediction.

Fig 7: Comparison of Proposed (CNN) and Existing

(SVM) in different dataset of Recall

In this experiment, the existing SVM was applied on bug
reports of five projects as shown in (Table 2). The NB was
directly applied to the whole feature space. The results of
CNN and SVM were compared. The proposed approach
was performed very well in classifying the bugs of seven
severity classes of Mozilla and Firefox dataset

Fig 8: Comparison of Proposed (CNN) different dataset
It can be seen the accuracy of proposed CNN an existing
SVM on the Blocker, Critical, Enhancement, Major,
Normal, Minor and Trivial classes vary between 96% to
99% ,92% to 98%for accuracy and precision Firefox
dataset.
The descriptive result shows that the CNN approach is more
accurate and more effective than the SVM. According to the
purposed objective, this experiment has been performed using
the multiclass classifier, which accurate bug prediction. This
experiment is doing by combining semantic features and
frequency features. At the end in this experiment comparative
analysis is done between the purposed model and existing
model, purposed model accuracy better than the existing
model.

V. CONCLUSION

Lastly, it can be concluded the Bug Report Severity
Classification is an important task in testing and maintenance
phase of the software
development lifecycle.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

1196

Published By:
Blue Eyes Intelligence Engineering
& Sciences Publication

Retrieval Number C4292098319/19©BEIESP
DOI: 10.35940/ijrte.C4292.098319
Journal Website: www.ijrte.org

 It is a challenging task because of multiclass classification. If
bugs are classified incorrectly, then it will induce a delay in
the system as bugs with high priority will not be dealt at the
right time. This task done manually is prone to errors, thus
there is a need for automatic classification of bugs to help the
triager. This paper proposed an automatic classifier of bugs
using bi-gram and TF-IDF approach to extract the features.
Later, the FW method was used to assign relative weights
which were optimized using ACO. The ACO was used to
identify important features for reducing the overlapping.
Furthermore, the classification is done by the generative ML
model NB and discriminative ML model Support Vector
Machine. The experiments were conducted on five datasets
which are Eclipse, Mozilla, JBoss, Firefox and Open FOAM.
The results were later compared with the existing CNN and
SVM. The existing CNN and SVM approach has an accuracy
ranging from 90 to 96% and 92 to 99%, while the proposed
methodology, i.e., CNN and SVM with ACO varied from 92
to 98% and 90 to 96%. The accuracy of the proposed model
was higher than the existing model. This proves the proposed
automatic classifier performed better than existing ones by
optimizing the weights of features.

REFERENCES

1. Jindal, Rajni, RuchikaMalhotra, and Abha Jain. "Prediction of defect
severity by mining software project reports." International Journal of
System Assurance Engineering and Management 8.2 (2017): 334-351.

2. Singla, Heena, Gitika Sharma, and Sumit Sharma. "Domain Specific
Automated Triaging System for Bug Classification." Indian Journal of
Science and Technology 9.33 (2016).

3. Jin, Kwanghue, et al. "Bug Severity Prediction by Classifying Normal
Bugs with Text and Meta-Field Information." (2016).

4. Zhou, Yu, et al. "Combining text mining and data mining for bug
report classification." Journal of Software: Evolution and
Process (2016).

5. AbbaspourAsadollah, Sara, Daniel Sundmark, Sigrid Eldh, Hans
Hansson, and Eduard Paul Enoiu. "A Study on Concurrency Bugs in an
Open Source Software." In The 12th International Conference on
Open Source Systems (OSS), 30 May-2 June 2016, Gothenburg,
Sweden. 2016.

6. Narudin, FairuzAmalina, et al. "Evaluation of machine learning
classifiers for mobile bug detection." Soft Computing 20.1 (2016):
343-357.

7. AbRazak, MohdFaizal, et al. "The rise of “bug”: Bibliometric analysis

of bug study." Journal of Network and Computer Applications 75
(2016): 58-76.

8. Jin, Kwanghue, et al. "Bug Severity Prediction by Classifying Normal
Bugs with Text and Meta-Field Information." Advanced Science and
Technology Letters 129 (2016): 19-24.

9. Palomba, Fabio, et al. "Smells like teen spirit: Improving bug
prediction performance using the intensity of code smells." Software
Maintenance and Evolution (ICSME), 2016 IEEE International
Conference on.IEEE, 2016.

10. Zhou, Yu, et al. "Combining text mining and data mining for bug
report classification." Journal of Software: Evolution and
Process 28.3 (2016): 150-176.

11. Tian, Yuan, et al. "Automated prediction of bug report priority using
multi-factor analysis." Empirical Software Engineering 20.5 (2015).

12. Xia, Xin, et al. "Elblocker: Predicting blocking bugs with ensemble
imbalance learning." Information and Software Technology 61 (2015)

13. Sharma, Gitika, Sumit Sharma, and ShrutiGujral. "A Novel Way of
Assessing Software Bug Severity Using Dictionary of Critical
Terms." Procedia Computer Science 70 (2015): 632-639.

14. Ratzinger, Jacek, Thomas Sigmund, and Harald C. Gall. "On the
relation of refactorings and software bug prediction." International
working conference on Mining software repositories. ACM, 2008.

AUTHORS PROFILE

Sarbjeet Kaur, M.E Scholar, Department of
Computer Science, NITTTR Chandigarh, B.E from
Sant Longowal Institute of Engineering and
Technology, Sangrur, Punjab

Dr. Maitreyee Dutta Ph.D. (Engg. & Tech.) from
Panjab University, M. Tech(ECE) from Panjab
university, B.E(ECE) from Guwahati University.

