
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

415

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10780782S619/2019©BEIESP

DOI:10.35940/ijrte.B1078.0782S619



Abstract: These days, the systems have been bigger upon

integrations with multiple functions of hardware and software.

To optimize these bigger systems, slicing technique is required to

extract the duplicated codes. In this study, system dependent

graph was used for slicing of duplicated codes. System dependent

graph is generated upon analysis of extracted control

relationship from system codes and data dependence. Duplicated

control and data relations are extracted upon analysis of

generated system dependent graph. Using control and data

relations, which is a suggestive slicing technique, duplicated

codes can be generated. Slicing technique using system

dependent graph can be applied to the extraction of duplicated

cross cutting modules in all programming methods regardless of

the environment of structure/object-oriented program. By the

suggestive method, code blocks duplicated. In the system can be

sliced and system code optimization can be contributed by

eliminating unnecessary codes from slicing.

Keywords :Control Dependence Relation, Duplicated Code

Slicing, System Optimization, Data Dependence Relation,

Source Code.

I. INTRODUCTION

Refactoring is a process to change the code structures to

enhance the internal structure and reusability without

changing program functions and behaviors. In the existing

object-oriented method, it is efficient to make modules of

core codes but has difficulty in cross-cutting

modulization[1]–[3]. Cross-cutting modulization can be

separated conceptually in the design stage, while it is

complicated in the realization stage since cross-cutting

modules are coexisted in the system[4,5].

To optimize the realized system, cross-cutting modules

should be extracted and reorganized. This method violates

the object-oriented principles, which should use the slicing

technique of duplicated source codes[6,7]. In case of using

slicing technique for system optimization, duplicated codes

in the system can be defined with the cross-cutting area and

eliminated easily. Eliminated cross-cutting module can

optimize the system upon application of aspect-oriented

programing. Existing system optimization techniques were

listed considering duplicated source codes within the realized

system details. Also, parts of object-oriented system were

defined as aspect-oriented programing details to separate

Revised Manuscript Received on July 22, 2019.

Sungho Sim, College of General Education, Semyung University,

Jecheon-si, Korea. Email:shshim@semyung.ac.kr

Seunghyung Lee, Dept. of Computer Engineering, Kyung Hee University,

Youngin-si, Korea. Email: shlee7@khu.ac.kr

specific elements and applied to system optimization. This

method is not enough as the objective system optimization

method on the object-oriented programs designed and

realized.

To optimize the system, the technique to extract duplicated

cross cutting modules is essential and the studies are required

on the source code slicing technique to extract cross cutting

modules. In the suggestive article, system dependence uses

the relations of control dependence and data dependence for

the slicing of duplicated cross-cutting modules[8]–[10].

Objective approaching methods by stages were summarized

for source code slicing using program dependences[11].

II. SYSTEM DEPENDENCE

Program dependence which demonstrates the dependence

relation on a procedure is required to analyze the dependence

of overall system[12]. Dependence has two aspects including

control dependence to show how a process is continued and

data dependence to show which variable influences to

determine its values.

Control dependence which defines the consecutive

processes during the program execution can identify the

basic information for code scheduling upon analysis of

dependence within the program[13]. It is mainly used in

compiler and essential for source code slicing. If each node is

connected to the dependent node during its execution process

and execution of A code is determined by B code, A is

considered as control dependence under B.

Data dependence shows the relations among variables to

be influenced by control flow and information can be

identified on the parameter process according to the method

calling using this relation. Data flow that used in each

execution sentence is expressed as the link to the execution

order made in the control flow relation[14].

Dependence graph without calling relation among

functions is called as program dependence graph, and that

including calling functions of the program with the subjects

of total sources is called as system dependence graph[15,16].

Upon analysis of dependence relations on each procedure and

combination of these, system dependence graph can be

generated. System dependence graph is the one that

combines with control dependence and data dependence

relations. If control dependence and data dependence

relations are analyzed, information on the execution time

action can be inferred without execution of the system and it

can be utilized in the

optimization of compiling

process. In addition, it can be

Duplicated Code Slicing Technique for System

Optimization

Seunghyung Lee, Sungho Sim

Duplicated Code Slicing Technique for System Optimization

416

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10780782S619/2019©BEIESP

DOI:10.35940/ijrte.B1078.0782S619

applied in the system slicing.

Fig. 1. System dependence graph including control/data dependence relations.

III. PROCESS FOR SYSTEM SLICING

For optimization of complicated system, separations of

duplicated cross-cutting modules are essential. System

optimization using cross-cutting concept means to optimize

the duplicated codes which are the subjects of cross-cutting in

the final realized system upon their extraction automatically.

To separate cross-cutting module, system slicing technique is

applied. Slicing process is designed as Fig 2 to extract

cross-cutting modules using system dependence graph.

Fig. 2. Process for System Slicing.

In the first step, indexes are defined to generate system

dependence graph from total system codes. Individual marks

for indexes are allocated for each line of system code which

will be demonstrated with the graph of program dependence

relations. Lines which can be marked with the same pattern

in the dependence graph are allocated with the same marks.

In the second step, system dependence graph is prepared.

Control and data dependence relations are described as the

directional graph on the system codes by objects. Individual

marks are allocated for each line to identify the types of

dependences (control and data).

In the third step, table of dependence relations is prepared.

Upon classification of dependence relations per each object

based on directional graph formula, lines with dependence

relation are expressed as Node (N) and relations between

nodes are expressed as Edge (E).

In the fourth step, duplicated cross-cutting modules are

extracted by comparisons of order expressed as Edge. Edges

of the objects A and B are defined as

and . Duplicated source codes are

extracted upon combination of connected sources with

indexes of each node Nd= ∶ n ∈ Ed which is duplicated

edge {Ed | Ed= Ae,Ed= Be }.

IV. EXTRACTION OF CROSS-CUTTING MODULE

BY SYSTEM SLICING

It shows the suggestive process of cross-cutting extraction

for system optimization. System example codes are prepared

as Fig 3 to apply system slicing. Example code is a partial

code of Bison which transforms the generator into JAVA

language with GNU. This consists of two classes. To perform

system optimization using two classes, duplicated

cross-cutting area is extracted by system slicing technique.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

417

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10780782S619/2019©BEIESP

DOI:10.35940/ijrte.B1078.0782S619

Fig. 3. Codes to be used system slicing.

Indexes applied with sentence patterns from system code

are defined for system slicing. Source code with the same

sentence pattern uses the same index. Sentence patterns of

two methods which are the subjects of system optimization

are defined and individual indexes for all the defined patterns

are allocated as Fig 4. Individual indexes are used to map the

node in the program dependent graph with source code.

Space and some control marks ({}...} are excluded.

Fig. 4. Definition of indexes on source codes.

Program dependence relations are analyzed by connecting

system codes with index values defined by sentence pattern

analysis. With respect to system dependence relations, data

and control dependence relations are analyzed based on the

direction of system code lines allocated with indexes. System

dependence relations of system code lines which are the

analysis subjects are generated through this. System

dependence graph is organized with control and data

dependence relations. Fig 5 shows the table for data and

control dependence relations upon analysis of two classes.

Fig 5. Control and data relations extracted per each class.

Duplicated Code Slicing Technique for System Optimization

418

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10780782S619/2019©BEIESP

DOI:10.35940/ijrte.B1078.0782S619

Program dependent graph is prepared as Fig 6 including

control and data dependence relations of

Bison_OutputA/Bison_OutputB. Upon identifying the

relations of each node in the prepared program dependent

graph, node (code) and edge (control and data) are described

as Fig 6 by understanding the control and data dependence

relations. Solid lines mean control dependence relations

while dotted lines do data dependence relations.

Fig. 6. System dependence graph on each class.

Duplicated edges are important information in slicing to

extract duplicated cross-cutting modules. Duplicated edges

are extracted upon analysis of dependence relations for

extracted classes.

Duplicated edges are important information in slicing to

extract duplicated cross-cutting modules. Duplicated edges

are extracted upon analysis of dependence relations for

extracted classes.

Duplicated edges, , are

extracted from control dependence edge of Bison_OutputA

class,

and those of Bison_OutputB class,

.

Duplicated edges are extracted with the same method in data

dependence edge. Extracted duplicated edges are as Fig 7.

Fig. 7. Extractions of duplicated control and data

dependence relations.

After extraction of nodes, from duplicated

edges, sliced cross-cutting modules are generated as Fig 8

upon mapping with source codes of

indexes,

Fig. 8. Sliced modules by analysis of system dependence

relations.

V. CONCLUSION

In the structure/object-oriented program whose

developments are completed, it has significant difficulty in

maintenance and reusability in case of new data introduction

or update of functions. In addition, it is not possible to

reorganize the specific elements only within the capsuled

objects after slicing in the object-oriented programing.

Hence, lots of difficulties are imposed in the treatments of

duplicated codes which are common elements in each object.

There is no objective approaching method to solve this

problem.

In this article, slicing method for duplicated cross-cutting

modules was suggested which could apply in both structure

and object-oriented program environments. To extract the

reusable modules, control and data dependence relations

were used. Individual indexes for each system code were

defined. Based on the defined indexes, system dependent

graph was generated upon investigating control and data

dependence relations. Compared

to system dependent graph, table

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-2S6, July 2019

419

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10780782S619/2019©BEIESP

DOI:10.35940/ijrte.B1078.0782S619

for control and data dependence relations was generated. By

comparison of orders in the generated dependence relation

table, duplicated elements could be extracted, and duplicated

modules could be generated by extracted relations. With the

suggestive method in this article, slicing problem of the

capsuled objects could be solved without limitation of

structure/object-oriented program environment, and this

could contribute to optimize the complicated system.

APPENDIX

It is optional. Appendixes, if needed, appear before the

acknowledgment.

ACKNOWLEDGMENT

It is optional. The preferred spelling of the word

“acknowledgment” in American English is without an “e”

after the “g.” Use the singular heading even if you have many

acknowledgments. Avoid expressions such as “One of us

(S.B.A.) would like to thank” Instead, write “F. A.

Author thanks ” Sponsor and financial support

acknowledgments are placed in the unnumbered footnote on

the first page.

REFERENCES

1. L. Aversano, M. Cerulo, MD. Penta, “How clones are maintained: An

empirical study,” In Proceedings of the 11th European Conference on

Software Maintenance and Reenfineering, 2007, pp. 81-90, https://doi.org/

10.1109/CSMR.2007.26

2. Misael Mongiovì, Giuseppe Pappalardo. Emiliano Tramontanab,

“Specifying and identifying widely used crosscutting concerns,”

Knowledge-Based Systems, Vol. 126, 2017, pp. 20-32.

https://doi.org/10.1016/j.knosys.2017.04.003

3. M. Marin, L. Moonen, A. Van Deursen, “An integrated crosscutting

concern migration strategy and its application to JHotDraw,” Seventh

IEEE International Working Conference on Source Code Analysis and

Manipulation, 2007, pp. 101-110.

https://doi.org/10.1109/SCAM.2007.25

4. D. Binkley, S. Danicic, T. Gyimothy, M. Harman, A. Kiss, B. Korel, “A

formalization of the relationship between forms of program slicing,”

Science of Computer Programming, Vol. 62, No. 3, 2006, pp. 228-252.

https://doi.org/10.1016/j.scico.2006.04.007

5. Shailendra Narayan, Leena, “Study of current program slicing techniques,”

5th International Conference-Confluence The Next Generation

Information Technology Summit, 2014, pp. 810-814.

https://doi.org/10.1109/ CONFLUENCE.2014.6949332

6. DamianoZanardini, “The semantics of abstract program slicing,” In:

Proceedings of the IEEE International Working Conference of Source Code

Analysis and Manipulation, 2008, pp. 89-98. https://doi.org/

10.1109/SCAM.2008.19

7. Alaknanda Chandra, Abhishek Singhal, Abhay Bansal, “A study of

program slicing techniques for software development approaches,”

International Conference on Next Generation Computing Technologies,

2015, pp. 622-627. https://doi.org/10.1109/NGCT.2015.7375196

8. Durga Prasad MadhusmitaSahu, Rajeev Kumar, Rajib Mall, “Dynamic

Slicing of Aspect-Oriented Programs,” In Proc of Informatica, Vol. 32, No.

3, 2008, pp. 261-274.

9. D.W. Binkley, M. Harman, “A surver of empirical results on program

slicing,” Advance in Computers, Vol. 65, 2004, pp. 105-178.

10. H. Subramaniam, H. Zulzalil, MA. Jabar, S. Hassan, “Feasibility Study of

Aspect Mining at Requirement Level,” Indian Journal of Science and

Technology, Vol. 7, No. 5, 2016, pp. 17-23.

11. G. Shu, B. Sun, TA. Henderson, A. Podgurski, “JavaPDG: Anew platform

for program dependence analysis,” In: Software testing, verification and

validation (ICST), IEEE sixth international conference on IEEE, 2013, pp.

408-415. https://doi.org/10.1109/ICST.2013.57

12. S. Sukumaran, A. Sreenivas, R. Metta, “The dependence condition graph:

Precise conditions for dependence between program points,” Computer

Language, Systems & Structure, Vol. 36, No. 1, 2010, pp. 96-121.

https://doi.org/10.1016/j.cl.2009.04.001

13. J. Krinke, “Mining control flow graphs for crosscutting concerns,”

Proceedings of Working Conference on Reverse Engineering, 2006, pp.

334-342. https://doi.org/10.1109/WCRE.2006.37

14. M. Mongiov`I, G. Giannone, A. Fornaia, G. Pappalardo, E.Tramontana,

“Combining static and dynamic data flow analysis: a hybrid approach for

detecting data leaks in java applications,” The Journal of the Korea

Xontents Association, 2015, pp. 1573-1579.

https://doi.org/10.1145/2695664.2695887

15. MP. Robillard, GC. Murphy, “Concern graphs: finding and describinf

concerns using structural program dependencies,” Proceedings of

International Conference on Sofware Engineering (ICSE), 2002, pp.

406-416. https://doi.org/10.1145/581339.581390

16. R. Halder, A. Cortesi, “Abstract program slicing on dependence condition

graphs,” Science of Computer Programming, Vol. 78, No. 9, 2013, pp.

1240-1263. https://doi.org/10.1016/j.scico.2012.05.007

AUTHORS PROFILE

SeunghyungLee received the Ph.D. degree from

KYUNG HEE University, Seoul, in 2011.

He heen been a Professor in the college of Software

Kyung Hee University, Korea, since 2011.

His research interests include Software Component,

System Optimization, Web Component Based Software

Development and Software Engineering

SunghoSim received the Ph.D. degree from KYUNG

HEE University, Seoul, in 2012. He has been a Professor in

the College of General Education, Semyung University,

Korea, since 2013. His research interests include Web

Service, Meta-data, Web component, Web Service QoS,

Component based Software development and Software Engineering

