
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

177

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10290982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1029.0982S1119

Abstract--- The security of voice communication over the

Internet Protocol is a continuously growing research area due to

the rapid rise in its usage among consumers. With the advent of

Voice-over-IP Protocols, the Real Time Protocol (RTP) was used

to facilitate VoIP communications. To secure this

communication, Secure Real Time Protocol (SRTP) was

implemented to encrypt these voice packets. The SRTP requires a

session key to be shared between the communicating entities. The

challenging task of establishing a new, unused session key to

secure each SRTP session was overcome by the key agreement

protocol, Zimmermann Real-time Transport Protocol (ZRTP)

which ensures confidentiality as well as a shield against

Man-in-the-Middle attack. We firstly analyze the security

properties of this protocol. Formal analysis is a mathematical

technique that can be used to verify the correctness of the system.

We simulated the complete ZRTP Protocol with the well-known

formal analysis tool, Uppaal, and verified the existing security

properties such as Deadlock Prevention, Liveliness, Safety and

other protocol parameters mismatch detection using the Uppaal

model checker engine. Temporal logic was used to design the

queries to verify the properties.

Index Terms--- Temporal Logic, Timed Automata, UPPAAL,

ZRTP.

I. INTRODUCTION

 In today's world, we try to ensure that any technology that

we use comes with the highest level of in-built security. To

narrow down our scope, we need to ensure that any

communication between two parties in any mode needs to be

secured and no third party or attacker can understand or

derive information from the communication. Almost

everything that we use today comes with in-built internet

facility or extensible internet facility. An entity connected to

the internet is vulnerable to attackers who can perform

sniffing, eavesdropping, Man in-the-Middle and

Denial-of-Service (DoS) attacks.

 We have reached the extent where even voice calls can be

performed flawlessly over the internet. This technology is

known as Voice-over-IP (VoIP) that is voice over the internet

protocol. As these communications are over wireless network

technologies, they are prone to any wireless attacks [1]. The

very first protocol that was designed for VoIP communication

was the RTP Protocol that just ensured unprotected wireless

voice communication. As this was not secure, this

communication was encrypted using a session key and

protocol was then termed Secure RTP (SRTP). The freshness

of the key generated in SRTP was questionable. If the session

key generated for the SRTP was a repeated one, an attacker

Manuscript received September 16, 2019.

Aishwarya Raghavan, TIFAC-Core in Cyber Security, Amrita School

of Engineering, Coimbatore, T.N, India.

P.P, Amritha, TIFAC-Core in Cyber Security, Amrita School of

Engineering, Coimbatore, T.N, India.

M. Sethumadhavan, TIFAC-Core in Cyber Security, Amrita School of

Engineering, Coimbatore, T.N, India.

with access to the previous keys can brute force or reuse the

keys to decrypt the communication. Thus, Philip

Zimmermann came up with the Zimmermann Real-time

Transport Protocol (ZRTP) which ensured a brand new

session key for each SRTP session.

 To ensure the correctness of the existing security properties

in the ZRTP Protocol, we need a mathematically proven

procedure to show proof of concept that the protocol has the

security that it claims to provide. We chose to formally

analyze this protocol with the help of timed automata and

transactions in the Uppaal Model Simulation. Uppaal

simulation itself performs basic sanity checks and helps us

find if any transaction trace leads to a deadlock situation

where the system's availability is put to test [2]. Once the

simulation is designed, we use Uppaal's verifier engine that

can check the states and their transactions and signal whether

the model satisfies the properties or not. We formed the

properties with the help of temporal logic to design the

queries.

II. SECURITY ANALYSIS

The ZRTP Protocol is considered to be secure due to

features like Man-in-the-middle attack prevention using the

SAS Authentication. In [2] and [3], we see ZRTP Protocol

analysis is done with AVISPA and ProVerif to check for

Man-in-the-middle protection property. The protocol also

rejects fake ZRTP messages and prevents DoS attacks. In [4],

π-calculus and ProVerif have been used to verify the

protocol's efficiency.

The session keys generated ensure that the message

confidentiality and trust is maintained. Some researches as in

[5], use SPIN to analyze the protocol. Even if a session's key

is compromised, the protocol ensures forward secrecy where

the keys of other/previous communications are unknown and

not revealed to the attacker. The space complexity of the

protocol is very efficient as it does not require any complex

computations or big storage capabilities as it requires a

feasible cache space. Any voice forgery/impersonation attack

is curbed with the use of voice verification during SAS

Authentication as seen in [6]. The communication in ZRTP is

successful only when the cache which stores the session key

on both the communication parties‟ side is empty. This

ensures that no spoofing happens. To facilitate security

features the protocol does not require any public key

infrastructure or pre-shared secret [7].

Aishwarya Raghavan, P.P. Amritha,

M. Sethumadhavan 

Simulation and Formal Verification of

SIP/ZRTP Protocol Using UPPAAL

SIMULATION AND FORMAL VERIFICATION OF SIP/ZRTP PROTOCOL USING UPPAAL

178

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10290982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1029.0982S1119

III. ZRTP PROTOCOL

ZRTP Protocol is one of the best known protocols for

encrypted voice communication over the internet. Fig. 1

shows the establishment of the communication and further

voice data packet transfer. The complete protocol can be

divided into three phases, namely, SIP Handshake, ZRTP Key

Agreement protocol and the SRTP communication [8]. The

caller is the entity that initiates the communication and the

callee is the entity that the caller wants to communicate with.

The SIP Server facilitates the initial SIP Handshake. In our

scenario, we consider that the ZRTP Protocol is preceded

with the SIP Telephonic Handshake. Each phase has been

explained below.

A. SIP Handshake

The caller sends an invite to the SIP Server, which is then

forwarded to the callee. Caller and Callee try to connect. Once

connection is established, the ringing happens. Each of them

have now joined the call and exchange an OK message, and a

final ACK to confirm the connection establishment.

Fig. 1: The SIP/ZRTP Protocol

B. ZRTP Key Agreement Protocol

This phase is further divided into four phases, namely,

Discovery Phase, Commitment Phase, Diffie Hellman Key

Derivation Phase and then the Confirmation Phase. In the

Discovery Phase, the caller and the callee exchange their

ZRTP identifiers required for the successful connection. Each

of them acknowledges the receipt of the other's identifiers.

The Commitment Phase finalizes the identifiers that will be

used by both the parties for the rest of the communication. In

the Diffie Hellman Key Derivation Phase, each entity shares

their ephemeral part of the key with the other, and they derive

the session key for the SRTP communication. Finally, the

Confirmation Phase will decide the life span of this session

key that will be used by the SRTP communication.

C. SRTP Communication

The session key generated above is always fresh and can

now be used to encrypt voice messages for the SRTP

communication. Just after the SRTP is established, both

parties have to verbally exchange a string, known as the SAS

(Short Authentication String), which defends against

Man-in-the-middle attack. One the SAS has been verified, the

parties communicated by encrypting their messages using the

session key. If any party wants to terminate the

communication, it issues a GoClear command and the SRTP

Session changes to a RTP Session after the ClearAck is issued

by the other party. This is the complete working of the

SIP/ZRTP Protocol.

IV. FORMAL SIMULATIOM

We have seen that the ZRTP Protocol has multiple states

and multiple outcomes depending on the scenario that is

encountered. We need a mechanism to model all these

possible outcomes in one place, analyze their behavior and

verify the security properties. For this purpose, we will be

formally analyzing the model using the Uppaal tool. This tool

can be used for formal analysis and verification of Cyber

Physical and Real Time Systems by using timed automata and

temporal logic [2]. The implementation of this tool has been

done in Java.

The simulation can be performed by using state transitions

and these state transitions can be enabled using receiver and

sender commands. We can maintain state names and state

variables in this part of the tool. The model is designed in the

Editor and the transition trace of the model is analyzed in the

Simulator. The property verification can be done using the

Verifier of the tool. We used temporal logic to design the

queries that check if our requirements have been satisfied by

the model.

To understand the models, we need to be aware of the

notations used.

1) A transition containing a '!' initiates another transition.

2) A transition containing a '?' waits for a transaction

initiation

3) Each template consists of a single Start state

represented by double circle.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

179

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10290982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1029.0982S1119

4) Single circle states represent any intermediate state

5) States with c in the circle indicate a commit state

which has only one outgoing transaction

The SIP/ZRTP Protocols has three components, namely,

the Caller, the SIPServer and the Callee. Each of these

components forms a template in the Uppaal model. The three

templates can be seen in Fig. 2, Fig. 3 and Fig. 4.

Fig. 2: Caller’s Automaton

Fig. 3: SIP Server’s Automaton

Fig. 4: Callee’s Automaton

The detailed transaction trace(s) is explained below:

1) A caller invites the callee via the SIPServer using the

caller_invite! Command.

2) The callee can reject the invite by issuing

caller_config_mismatch! If it does not match the

caller‟s requirements or the callee cannot connect

with the caller at the moment. If no such scenario, the

callee initiate connection with the caller via the

SIPServer using try_connection! Command.

Similarly, caller can disconnect with the callee if any

requirements mismatch by issuing

callee_config_mismatch!.

3) If the invite has been accepted on both the ends, it is

followed by the ringing (ring_caller!) and ok (OK!)

commands. The caller, then, sends the ACK! To

acknowledge the completion of the SIP handshake.

4) Now, the ZRTP Phase begins and from here onward,

there will be direct communication between the

caller and callee, with no SIPServer in the middle.

5) Caller and Callee will verify and acknowledge each

other‟s Hello through the zCallerHello! And

zCalleeAck_Hello! Commands. The Hello

commands contain that identifiers that need to be

verified before the ZRTP Key is derived. If any

mismatch in the identifiers such as in

caller_hello_denied! And callee_hello_denied!, the

communication will go to the disconnected commit

states in the respective templates.

6) If the Hello‟s have been successfully verified, The

Commit! Command will finalize the communication

settings and identifiers for the secure

communication.

7) Both sides now exchange their Diffie-Hellman key

part with commands send_DH1! And send_DH2!

8) After the exchange, the key formation confirmation

states may lead to disconnected commit states if

there is any mismatch during the Diffie-Hellman key

generation, as seen in callee_wrong_confirmation!

or caller_wrong_ confirmation!.

9) On successful generation of Diffie-Hellman key, the

Conf2Ack! marks the end of the ZRTP Key

agreement phase and the SRTP Phase begins.

10) Both sides will now match their SAS Authentication

strings verbally by issuing SAS_Callee! and

SAS_Caller! to ensure no Man-in-the-middle. If

detected, MITM2_DETECTED! and

MITM2_DETECTED! will lead to disconnected

state.

11) If the SAS authentication Phase is successful, the

parties can now have a secure voice communication

DATA! and DATA_REPLY!.

12) To terminate the session, we can use the GOCLEAR!

Command. The session is closed only when the other

party responds with a CLEARACK!. This closes all

the channels created for this communication. Any of

the two parties can choose to close the

communication.

13) Hence, the above explanation shows that all

scenarios have been considered and modeled so that

the system can handle any scenario.

SIMULATION AND FORMAL VERIFICATION OF SIP/ZRTP PROTOCOL USING UPPAAL

180

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: B10290982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1029.0982S1119

V. RESULTS

The above simulated model is verified in the Uppaal

verifier using temporal logic. Each condition we want to

verify should be written using temporal logic notations such

as 'A[]' expression, whose condition all transaction must

follow and 'E<>' expression, whose condition is followed by

at least one transaction trace. We verified the below

mentioned seven properties of the system.

A. Deadlock

This query verifies that no transition trace leads to a

deadlock situation in the model and any situation lands in a

final successful/unsuccessful state.

A[] not deadlock

B. Safety

Safety verifies that “something bad never happens” and in

our model we verify that only when the caller initiates a call

request, the callee responds with a connection acceptance.

Upon caller‟s „Sent_Invite‟ state, the SIPServer will move to

the „Invite_Callee‟ state. Then the callee tries to connect in

state „connecting‟ and they both exchange initial Hellos in

states „Hello_sent‟ and „Hello2_sent‟.

E<> (Caller.Sent_Invite imply SIPServer.Invite_Callee)

and (Caller.Sent_Invite imply Callee.connecting) and

(Caller.Hello_sent imply Callee.Hello2_sent)

C. Liveliness

Liveliness verifies that “something good eventually

happens” and in our model we verify that on successful caller

communication completion, the SIPServer and the callee

terminate. Upon caller‟s „send_clear‟, callee closes at state

„clear_rcv‟ and SIPServer at „close_SIPserver‟.

E<> (Caller.send_clear imply Callee.clear_rcv) and

(Caller.send_clear imply SIPServer.close_SIPserver)

D. Invitation Rejection

This property verifies that if the caller's configurations (as

in the first scenario) or the callee's configurations (as in the

second scenario) are not suitable as in states

„caller_mismatch_found‟ and „Mismatch_calleeConfig‟

respectively during the initiation of SIP handshake, the model

leads to „disconnected‟ states in the caller, callee and SIP

Server.

E<> (Caller.caller_mismatch_found imply

Caller.disconnected) and (Caller.caller_mismatch_found

imply SIPServer.disconnected) and

(Caller.caller_mismatch_found imply Callee.disconnected)

E<> (Callee.Mismatch_calleeConfig imply

Caller.disconnected) and (Callee.Mismatch_calleeConfig

imply SIPServer.disconnected) and

(Callee.Mismatch_calleeConfig imply Callee.disconnected)

E. Discovery Hello Mismatch

This property verifies that if the caller's Hello parameters

(as in the first scenario) or the callee's Hello parameters (as in

the second scenario) are not compatible as in states

„hello_caller_denied‟ and „hello_callee_denied‟ respectively

during the ZRTP Discovery Phase, the model leads to

„disconnected‟ states in the caller, callee and SIP Server.

E<> (Caller.hello_caller_denied imply

Caller.disconnected) and (Caller.hello_caller_denied imply

SIPServer.disconnected) and (Caller.hello_caller_denied

imply Callee.disconnected)

E<> (Callee.hello_callee_denied imply

Caller.disconnected) and (Callee.hello_callee_denied imply

SIPServer.disconnected) and (Callee.hello_callee_denied

imply Callee.disconnected)

F. Invalid DH Key Generation

This property verifies that if the caller (as in the first

scenario) or the callee (as in the second scenario) is not able to

generate the DH Key as in states „callerConf_wrong‟ and

„calleeConf_wrong‟ respectively during the ZRTP DH Phase,

the model leads to „disconnected‟ states in the caller, callee

and SIP Server.

E<> (Caller.callerConf_wrong imply

Caller.disconnected) and (Caller.callerConf_wrong imply

SIPServer.disconnected) and (Caller.callerConf_wrong

imply Callee.disconnected)

E<> (Callee.calleeConf_wrong imply

Caller.disconnected) and (Callee.calleeConf_wrong imply

SIPServer.disconnected) and (Callee.calleeConf_wrong

imply Callee.disconnected)

G. Man-in-the-Middle Detection

This property verifies that if the caller (as in the first

scenario) or the callee (as in the second scenario) is not able to

show the same SAS Authentication string as in states

„mitm1Detected‟ and „mitm2Detected‟ respectively during

the SRTP Phase, the model leads to „disconnected‟ states in

the caller, callee and SIP Server.

E<> (Callee.mitm1Detected imply Caller.disconnected)

and (Callee.mitm1Detected imply SIPServer.disconnected)

and (Callee.mitm1Detected imply Callee.disconnected)

E<> (Caller.mitm2Detected imply Caller.disconnected)

and (Caller.mitm2Detected imply SIPServer.disconnected)

and (Caller.mitm2Detected imply Callee.disconnected)

VI. CONCLUSION

The existing security of the SIP/ZRTP Protocol shows that

with the increasing use of VoIP over traditional wired

telephonic communication, VoIP is preferred by users due to

the ease of use, low cost and high security features.

As ZRTP Protocol provides security against information

disclosure, Man-in-the-Middle and Denial-of-Service, by

constantly securing this protocol, we can achieve good VoIP

security. Formal verification of these security features assure

that the VoIP communication provides end-to-end security

with no requirement for pre-shared secret. Having said that,

there are multiple possibilities that can occur as zero-day

attacks.

Hence we need to explore on possible attacks on the

existing VoIP Protocol, harden the protocol to stay immune to

those attacks and then formally verify it's correctness to

provide maximum security to users on the internet.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8, Issue-2S11, September 2019

181

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication
Retrieval Number: B10290982S1119/2019©BEIESP

DOI: 10.35940/ijrte.B1029.0982S1119

REFERENCES

1. P. Gupta and V. Shmatikov, "Security Analysis of

Voice-overIP Protocols," 20th IEEE Computer Security

Foundations Symposium (CSF'07), Venice, 2007, pp.

49-63.

2. Jayasri K.S., Jevitha K.P., Jayaraman B. (2018)

Verification of OAuth 2.0 Using UPPAAL. In: Mandal J.,

Sinha D. (eds) Social Transformation – Digital Way. CSI

2018. Communications in Computer and Information

Science, vol 836. Pp. 58-67. Springer, Singapore

3. R. Bresciani, S. Superiore, S. Anna, and I. Pisa. The ZRTP

protocol security considerations. Technical Report

LSV-07-20, 2007

4. R. Bresciani and A. Butterfield, "A formal security proof

for the ZRTP Protocol," 2009 International Conference

for Internet Technology and Secured Transactions,

(ICITST), London, 2009, pp. 1-6.

5. X. Chang, Y. Qin, Z. Chen and B. Xing, "ZRTP-based

Trusted Transmission of VoIP Traffic and Formal

Verification," 2012 Fourth International Conference on

Multimedia Information Networking and Security,

Nanjing, 2012, pp. 560-563.

6. Petraschek, M. and Höher, Thomas and Jung, O. and

Hlavacs, Helmut and Gansterer, Wilfried, Security and

Usability Aspects of Man-in-the-Middle Attacks on

ZRTP, J. UCS Journal of Universal Computer Science, 14

(5). pp. 673-692 Springer Verlag (2008)

7. O. Jung, M. Petraschek, T. Hoeher and I. Gojmerac, "Using

SIP identity to prevent man-in-the-middle attacks on

ZRTP," 2008 1st IFIP Wireless Days, Dubai, 2008, pp.

1-5.

8. Zimmermann, P., Johnston, A., Ed., and J. Callas, "ZRTP:

Media Path Key Agreement for Unicast Secure RTP",

RFC 6189, April 2011,

https://www.rfceditor.org/info/rfc6189

AUTHORS PROFILE

Aishwarya Raghavan Currently pursuing

final year Masters‟ Degree at Amrita School of

Engineering, Coimbatore, India. Interested

research areas include Zigbee Security and

VOIP Security.

Amritha P. P Currently serves as Assistant

Professor at TIFAC-CORE in Cyber

Security, Coimbatore Campus. Research areas

include Stegnography, Steganalysis,

Information Hiding, Secret sharing and

Cryptography.

M. Sethumadhavan Head of TIFAC-Centre

of Relevance and Excellence in Cyber Security,

an R&D centre at Amrita Vishwa Vidyapeetham

Coimbatore campus since its inception in the

year 2005. He leads the R&D that focuses on the

areas of cyber security such as Cryptology, Post

Quantum Cryptography, Steganalysis, Secure

Coding, Computer Network Security, Digital Forensics etc. A

central focus of his work has been to create innovative educational

and research programs and develop world-class expertise in Cyber

Security as the underlying vision.

