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      Abstract: In recent years, power quality (PQ) has become an 
important issue for utilities and users. In order to improve PQ, a 
method for detecting and classifying power quality disturbances 
(PQDs) is proposed. Hence in addition to identifying the 
disturbance signals, the proposed method is able to determine its 
type when occurring. This approach is based on Multilayer 
perceptron and Levenberg-Marquardt training rule. It is inspired 
by the desire to take advantage of the parallelism inherent to 
neural networks in view of hardware implementation using 
reconfigurable chips. The inputs of these networks are the 
samples obtained on the power grid in various conditions. The 
proposed method is tested for sags and swells. To classify the 
disturbances, the neural architectures have been generalized and 
configured according to the number and type of disturbances to 
be treated. To validate and test the proposal, a grid model was 
built with a three-phase fault generator under Matlab / Simulink 
R2017a. After comparing the results with those obtained by 
certain methods in the literature, the proposal proves to be an 
efficient and reliable tool for monitoring PQ. In fact it has the 
smallest mean square error and a highperformance with 
precision of 96%. 

      Index terms: electrical disturbances; Multilayer perceptron; 
Levenberg Marquardt algorithm, detection and classification 

I. INTRODUCTION 

The proliferation of sensitive electronic equipment, besides 
the deregulation of the electric power industry, is making 
the quality of delivered power an increasingly important 
issue [1], [2]. Even in the domestic and public field there are 
several electrical disturbances which negatively diminish 
performance and lifetime of electrical equipments. Among 
these disturbances we find the voltage sag [3, 4], swell, 
transient oscillations and harmonics. In the interests of 
preventing malfunction and even destruction of electrical 
equipments, it is necessary to implement systems for 
compensating these disturbances. This can only be possible 
if we know their origins and if we are able to classify them 
accurately. Many disturbance classification techniques have 
already been implemented [4-8].  
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Although these efforts,there is still need of further 
research. Indeed there are several problems associated with 
modernpower systems, such as a massive proliferation of 
non-linear loads that generate harmonic contentand a 
distributed generation that produces intermittent and 
variable power [9]. 
These require both the development of new solutions to 
reduce their negative impact, such as active power filters, 
and the integration of energy storage, among others [10]. PQ 
monitoring systems should provide information on voltage 
and current waveforms for subsequent processing and 
analysis of measured signals [11]. For the latter, the 
proposal of efficient and reliable methodologies in terms of 
computing resources and performance, respectively, for 
detecting and classifying PQDs is desirable. Among the 
recent works, some methodologies for the identification of 
PQD emerge. Those based on signal processing techniques 
such as the Fourier transform (FT), the short-term Fourier 
transform (STFT) and the wavelet transform (WT) can be 
mentioned. FT is characterized by its ease of 
implementation, but lacks time-frequency localization 
capabilities and is not suitable for non-stationary 
disturbances [12]. STFT itself contains time and frequency 
information and can analyze non-stationary signals by 
sliding windows [13]. Nevertheless, this method is limited 
by the size of the sliding window used. Although the WT is 
capable of improving the time-frequency resolution for 
disturbance analysis [14], the analysis results may be 
affected by the noise present in the signal. Other methods 
for classification of disturbances use the Decision Tree (DT) 
and Artificial Neural Networks (ANN) [15]. DT is a 
decision support tool in the form of a tree graph used to 
derive classifications by describing relationships between 
different characteristics. This is how it has also been tested 
with encouraging results to recognize PQDs. However, this 
method generates cumulative errors in classifying all 
disturbances over the iterations. To overcome this, 
classifiers based on neural techniques have been widely 
used via a quick learning process without cumulative errors. 
In these algorithms, the training dataset,training algorithm, 
topology or structure (size, complexity, and elements), and 
designer expertise areissues that have a direct impact on 
their performance. Therefore, special attention and, 
sometimes,great effort, have to be applied in order to obtain 
a good enough performance. 
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 Although neural classifiers require a great amount of 

dataset, they can be suitable for this task for they are faster 
and more accurate than many other methods. In this way a 
research opportunity can be highlighted, e.g.,development 
andapplication of low-complexity methodologies, and 
proposal of simplerclassification schemes.  
In this paper, a neural approach for PQDs detection and 
classification, based multilayer perceptron (MLP) topology 
is investigated. It consists of a single hidden layer with an 
optimal number of neurons. The learning rule is based on 
the Levenberg-Marquardt algorithm.This approach intends 
to show the effectiveness and usefulness of the methodology 
for voltage sags and swells detection and classification even 
when they appear simultaneously. The theoretical 
background related on PQ monitoring, and MLPare 
primarily presentedin Section 2. Section3explains the 
proposed methodology based on Levenberg Marquardt 
learning algorithm (LM-MLP) for detection and 
classificationof PQDs. Finally, simulation results are 
presented in Section 4 and the ensuing discussion justifies 
the use of this method. 

II. THEORETICAL BACKGROUND 

In this section, theoretical aspects are presented respectively 
on the PQ monitoring and MLP neural networks driven by a 
Levenberg-Marquardt algorithm. 
A. PQ Monitoring 

PQ indices that meet the required standards can be used to 
illustrate the negative impact of electrical disturbances [16]. 
These disturbances correspond to significant variations in 
amplitude or RMS values of the currents or voltages relative 
to the nominal value during a time interval. The IEEE 1159 
standard [17] and the European standard EN 50160 [18] 
categorize the aforementioned disturbances as indicated in 
Table I. On the other hand, the estimation of harmonics in a 
regulatory framework is carried out in accordance with the 
requirements of IEC 61000-4-7 [19]. The discrete Fourier 
transform of the current or voltage signals affected on the 
waveform is referred to within a rectangular window of 
length equal to 10 or 12 cycles for 50 Hz systems. 
 

Table I: Power Quality disturbances 

PQ disturbance Duration Values 
Sag > 0.5 cycles 0.1 to 0.9 p.u. 
Swell > 0.5 cycles 1.1 to 1.8 p.u. 
Outage > 0.5 cycles < 0.1 p.u. 
Flicker - 0.9 to 1.1 p.u. 
Harmonic - THD > 5% 
Interharmonic - 

 
B. The Multilayer Perceptron and Levenberg Marquardt 

training rule 

The use of MLPs for solving some complex problems is not 
new today. It has been successfully applied several times 
through supervised learning with a very popular algorithm 
known as the error-forwarding algorithm. This algorithm is 
based on the error correction learning rule. Figure 1 shows a 
typical three-layer perceptron architecture. In order to avoid 
local minima and to have a stable network, we must pay 
attention to the choice of initial conditions for weights. Note 

that the number of neurons in the hidden layer is a 
significant problem. If it is too high, the learning error of the 
neural network is low, but there is a risk of over-learning. 
This means that we must choose an optimal number of 
neurons in the hidden layer to obtain a restricted 
architecture. 

The Levenberg-marquardt training rule is based on the 
Newton algorithm given as follows: 

1
1k k k kW W H g

       (1) 

Fig. 1. A typical 3-layer Perceptron architecture 
 
where W is the weights matrix, H is the Hessian matrix and 
g is the gradient. By choosing this method for weights 
updating, the calculation of the Hessian matrix requires a 
second derivative of the error function, which is 
complicated. Instead of calculating the matrix H,we 
introduce a new matrix called the Jacobian matrix J. Thus 
the Hessian matrix is replaced by the Jacobian matrix by the 
following relation known as Gauss-Newton: 

TH J J      (2) 
The gradient g is calculated from the following relation: 

.g J e      (3) 

So the learning algorithm is given by the relation: 
1

1
T

k k k k kW W j j j e

       (4) 

However, the Gauss-Newton method is also faced with a 
difficulty like the Newton algorithm. For example, the 
convergence problem for a complex optimization of the 
error space. Mathematically, this problem is often due to the 

difficulty of inverting the matrix TJ J . Thus modifications 
have been made to the Gauss-Newton algorithm to 
overcome the previous problem from which we arrived at 
the Levenberg-Marquadt algorithm. To allow inversion of 

the matrix TJ J , an approximation is then performed as 
follows 

TH J J I      (5) 

where  is a combination coefficient always positive. I is 

the identity matrix. Thus the learning rule forweights 
modification becomes:  

1 1
1

T
k k k k kW W j j I j e 

       (6) 
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III. PROPOSED METHODOLOGY 

A. The power grid model 

Detection and classification of power disturbances, based on 
neural networks, is carried out by considering the scheme of 
fig. 2. The combination of several PQDs can be performed 
by adding the desired disturbances at a specific time. Their 
propagation on the network will cause a disruption in the 
three-phase load. The RMS voltage values across the load 
will be used as dataset input for the neural networks to 
detect the presence of distortion. The characteristics of the 
electrical system used to simulate sags and swells are 
summarized in Table II.In case of a fault between phase A 
and the ground, under the parameters of table III, we obtain 
the results 

Three-Phase 
voltage source

Capacitor 
banks

Variable 
speed drive

Motor 
starter

Load 1 Load 2 Load 3

Three-
Phase load

PCC

Distorsions 
generator

Multilayer 
Perceptron 

(MLP)

Sag Swell Harmonics

VRMS

Motor 2 
3

Motor 1 
3

Distribution Line

Three-
phase 
fault

Fig.2. Electric circuit to generate PQ disturbances 

Table II: power grid parameters 

Parameter Value 
Three-phase voltage source 15kV, 30MVA 
Transformer : 15kV/400V 
Load voltage nominal value 400V 
Active power 0,05KW 
Reactive power 0,02 KVAR 
 

Table III: Parameters during generation of a single-
phase fault 

 
Three-phase Voltage (V) 

 
RMS value of the voltage (V) 

 
Time (s)  

Fig. 3. Short-circuit between phase A and the ground from 0.1 
to 0.168s 

 

presented on fig. 3.In case of generation of a short circuit 
between phases A and B the results is presented in fig. 4.  

Three-phase voltage (V) 

 
 

RMS value of the voltage (V) 

 
Time (s)  

Fig. 4. Short-circuit between phases A and B from 0.1 to 
0.168s 

 

While starting a squirrel motor from 0.1 to 0.15s with the 
parameters presented in table IV, the results of fig.5 are then 
obtained. Considering sag generation between 0.1s and 0.3s 
presented  
 

Table IV: Parameters of the connected squirrel motor 

 
Three-phase voltage (V) 

 
RMS value of the voltage (V) 

 
Time (s)  

Fig.5. Starting of a squirrel cage asynchronous motor 
from 0.1 to 0.15s 

Single-phase voltage (V) 

 
RMS Single-phase voltage (V) 
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Time (s)  

Fig.6. Sag simulation from 0.1 to 0.3s: a) voltage waveform, b) 
voltage RMS value in sag condition 

 
Single-phase voltage (V) 

 
Fig.7. Swell simulation between 0.1 and 0.3s 

 
Single-phase voltage (V) 

 
Time (s)  

Fig.8. Sag from 0.1 to 0.3s combined with swell 
simulation between 0.4 and 0.6s 

in fig. 6, the voltage waveform and acase of RMS voltage 
value during this condition are shown. This reveals that the 
sag issetat 0.47p.u of the nominal value of 230V. In fig. 7, a 
short swell also generated with a magnitude of 1.8 p.u. of 
the nominal value, is shown. Later on, both distortions 
appearing together are presentedin fig 8.  

B. Methodology of detection of electrical disturbances 

Figure 9 presents the architecture of the neural network. A 
process input for the learning data, two hidden layers of 
which the first has 20 neurons and the second a neuron for 
the output. Block 'W' contains the different weights of said 
layer; while block 'b' contains network biases. All elements 
are added and transferred to the sigmoidal tangent activation 
function. The obtained values are retrieved from the block 
a{1} and transferred to thesecond layer. The data arriving at 
layer 2 passes through the weights block LW {2,1}. By 
addition with the biases of layer 2 (block b {2}), the data 
will travel through the linear activation function of the 
output layer before being available at the process output. 

In this paper, the learning process of the MLP involves 
generating the learning data, determining the size of the 
network, choosing the algorithm and analyzing its 
performance. The deployment of the neural network is done 
under Matlab/Simulink R2017a installed on a computer with 
a Windows 8.1 professional 64-bit, a 4GB RAM and INTEL 
core processor i5 2.53GHz. The learning dataset was 
generated from an electrical distribution model. 500 samples 
of voltage sags and swells are thus acquired, respectively. 
The neuron output is set at one if one or more disturbances 
exist and to zero when there is no disturbance. 60% of the 
input samples are used for learning, i.e. 300 samples. 
Determining the size of the proper network is very important 
in order to reduce the learning time and for better resolution 
of the given problem. However, there is no mathematical 
relationship to determine the number of layers and the 

number of neurons per hidden layer. Thus, we carried out 
several simulations to choose its optimal structure. For 

 

 

 
Fig. 9. Neural network deployed under Simulink 

 
validation and testing of the neural network we used 20% of 
the samples. The learning performance of the ANN is based 
on the observation of the mean square error between the 
observed and desired outputs, in order to measure its ability 
to detect and classify combined disturbances (voltage sags 
and swell). The learning process ends when the value of the 
error is low enough. The results were obtained for a neural 
network with three layers and 20 neurons in the hidden 
layer. At first, it will be a question of observing the 
performances of the neural network in the detection of 
simple faults, the voltage sag and then the swell. Thereafter 
we will observe its ability to detect and classify combined 
disturbances. In figure 10, is presented the architecture of 
the neural network, with one neuron in the input layer, 20 
neurons in the hidden layer with the sigmoidal tangent as 
activation function, an output neuron with a linear activation 
function. The learning algorithm is that of Levenberg-
Marquardt and the criterion of performance is the mean 
squared error (MSE).The performance evaluation is 
presented in fig. 11, where the learning process, the 
validation process and the test process are indicated. The 
horizontal dotted line represents the best approximation for 
the learning process. As soon as the validation curve touches 
this line, the learning ends at the fifth iteration with a MSE 
of 9.5319 × 10-12. This reflects a rapid learning of the neural 
network and a better approximation of the desired outputs. 
Similarly, in the case of the detection of swells, we kept the 
same neural network architecture. The learning process 
stopped after 5 iterations with an average squared error of 
9.2672 × 10-13. This means that the chosen Levenberg-
Marquardt algorithm allows quick learning for the neural 
network and also ensures a better convergence. 
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IV. RESULTS AND DISCUSSION 
 
In this study, in order to test the PQ events, a balanced 
distribution system, presented in fig 12 is considered. The 
original system consists of 15KV/50Hz power source, a 
15KV/400V, 1MVA transformer and a three-phase RLC 
load of 400V/50Hz with 50W of active power and 20VAR 
of inductive reactive power 

 

 
Fig. 10. Network Architecture for Voltage sag Detection 

 

 
Fig. 11 Network performance for voltage dip detection

 
Fig. 12 Network performance for voltage dip detection 

  
A. Detection of sags and swells 

The first electrical disturbance analyzed is the voltage sag. It 
was generatedat a depth of 60% of the rated voltage (230V) 
on phase A and over a periodfrom 0.1s to 0.5s as shown in 
fig. 13. This figure presents the sinusoidal waveform of the 
voltage on phase A, its RMS value and the MLP output 
respectively. The ANN output indicates with level “1” the 
disturbance occurrence. It returns to “0” as soon as the 
voltage sag disappears. The second electrical disturbance 
analyzed is a swell, generated at 180% of the nominal value 
(230V) of the voltage of phase A over a duration from 0.1s 
to 0.5s. The results are shown in fig. 14. The sinusoidal 
voltage waveform, its RMS value and the ANN output are 
also shown. The overvoltage reaches a value of 414 V on 
the same phase over the interval 0.1s to 0.5s. In this figure, 
we can clearly observe the transition of the neural output to 
“1” in 
 
 

Single-phase voltage (V) 

 

RMS value of the voltage (V) 
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Time (s)  

Figure 13. Detection of a voltage dip on phase A 
 

the presence of the disturbance and its returning to “0” as 
soon as it disappears. 
B. Classification of electrical disturbances 

In this section, the performance of the LM-MLP used for the 
detection and classification of combined disturbances is 
evaluated. The input vector for the neural network has a 
dataset of 1000 samples in which we find the amplitudes for 
voltage sag, swell and normal voltage generated from the 
power grid. The neural network made up of two similar 
architectures for sag/swell detection, will then have two 
outputs for the voltage sag and swell respectively. The 
desired values at the output of the neural networks are “1” 

for both types of disturbances and “0” for the normal signal 
(voltage at 230V RMS). 
In the same way, 60% of the input samples are been used for 
the learning process, 20% is for the validation process and 
the remaining 20% for the test process. After multiple 
simulation operations, we came to a 3-layer neural network  
 

 
RMS value of the voltage (V) 

 

 
Time (s)  

Figure 14: Swell detection on phase A 
 

 
 

 

Figure 15: Network Performance for sag and swell 
detection and classification 

having 20 neurons on the hidden layer, providing better 
performance. The learning process stops at 36 iterations 
with a MSE at 6.6188e-5 s. The increase in the number of 
iteration compared to the number of iteration (05 iterations) 
obtained in the detection of simple perturbations is due to 
the presence of a larger learning data (1000 samples). 

After the learning phase, from a distribution model in 
Simulink, we generated on phase A, a signal having a 
normal voltage of 230V RMS, a voltage sag in the interval 
0.1s to 0.5s whose depth is 60% of the nominal value and a 
short swell between 0.6 and 0.8 rising to a level of 180% of 
the nominal value. The outputs of the neural networks are 
shown in Figure 16. As we have said a little more high, the 
desired network outputs are “1” for voltage sag / swell and 

“0” in the absence of perturbation. The analyzed 
instantaneous voltage on phase A,its RMS value and the 
ANN outputs are then shown respectively. As observed, the 
voltage sag appears from 0.1s to 0.5s and the swell between 
0.6s to 0.8s. This  

 
Single-phase voltage (V) 

 
RMS value of the voltage (V) 

 

 
Time (s)  

Figure 16: Detection and classification of voltage sag and 
swell on phase A 

reflects a good classification of the voltage sag and swell by 
the neural network. 
 
 

Single-phase voltage (V) 

MLP output  

MLP output  

MLPs output  
Detection of sag 
Detection of swell 
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On the other hand, Table IV shows a comparison between 
the obtained results in this paper and other research studies 
reported in [20]. The other methods are defined as follows: 

- SCGB: scaled conjugate gradient descent,  
- RB: resilient backpropagation, 
- OSS: one step secant (OSS).  

Table IV: Performance comparison in terms of 
percentage of correct classification results 

Algorithms 

Parameters 
No. of 

neurons 
in the  
hidden 
layer 

Epochs 
MSE in 

training set 

Percent 
of 

accurate 
cases 

SCGB 20 40 2.59*2-5 98 
LM 20 329 0.00891 84 
BR 20 1000 0.013254 74 
OSS 100 132 0.03367 63 
LM-MLP  20 36 6.6188*10-5 96 
 
As shown in the table, the proposed method offers the 
smallest MSE and 96% of accurate cases, quite close to 98% 
obtained for the SCGB. The detection and classification of 
voltage sags and swells are effective. Therefore,the 
proposed neural network provides a better performance. 

V. CONCLUSION 

This study successfully presented the application of the 
LM-MLP approach for the detection and classification of 
power quality disturbances as sags and swells, as well as its 
comparison with some other backpropagation algorithms. 
The comparative study is made according to criteria such as 
the number of neurons, the number of epochs, the mean 
squared error and the percentage of accurate cases. The data 
set for the neural networks was realized using generated sag 
/ swell signals. Some are used for the learning process and 
others for the tests. Learning performance and test results 
are tabulated and presented. The comparison shows that the 
proposed Levenberg-Marquardt multilayer perceptron is the 
best choice for detecting and classifying energy quality 
disturbances especially in terms of mean square errors, 
number of epochs and particularly the accuracy. 
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