FS-Cartesian Product Topological Space and its Compactness

Vaddiparthi Yogeswara, K.V. Umakameswari, D. Raghu Ram, Ch. Ramasanyasi Rao, K. Aruna kumari

Abstract: For any nonempty family $\{(\mathcal{B}_i, \mathfrak{T}_i)\}$ of compact FsB-Toplogical Spaces, the corresponding Fs-product space is also compact.

Index Terms: Fs-Set, Fs-Subset, (b, β) object, Fs-Point, FsB-Toplogical Space.

I. INTRODUCTION

Axiom choice is not true in the theory of L-Fuzzy sets Nistla V.E.S Murthy [10] proved Axiom Choice of fuzzy sets in his theory of F-sets. VaddiparthiYogeswara[2] etc ... developed the theory of Fs-sets with the goal of introducing the complement of a fuzzy set which was not satisfactorily explained by previous relevant theories .Also VaddiparthiYogeswara, BiswajitRath, Ch.RamaSanyaasiRao ,K.V.UmaKameswari,D.Raghu Ram introduced the concept of FsB-topological Space on a given Fs -subset of an Fs-set and also they introduced FsB-subspace in the same paper .Fs-points and Fs-point set $FSP(\mathcal{W})$ are introduced by VaddiparthiYogeswara etc...[2] and based on Fs-set theory defined a pair of relations between P(FSP(W)) and they $\mathcal{L}(\mathcal{W})$. Here $FSP(\mathcal{W})$ stands for Fs-Point set of $\mathcal{W}, \mathcal{L}(\mathcal{W})$ stands for collection of allFs-subsets of \mathcal{W} and $P(FSP(\mathcal{W}))$ is power set of $FSP(\mathcal{W})$ and proved one of them is a ' Λ '- complete homomorphism and other is 'V'- complete homomorphism and searched some properties of these relations between complemented constructed crisp sets and Fs-complemented sets through thesehomomorphismand ultimately they proved a representation theorem connecting Fs-subsets of $\mathcal W$ to crisp subsets of FSP($\mathcal W$) via homomorphisms.For a given non-empty family of compact Fs-toplogicalspaces, we prove in this paper their Fs-Cartesian Product space is also compact. Fs-Sets, Fs- Set functions etc... in brief are explained in first four sections of

Revised Manuscript Received on June 01, 2019.

this paper. (U) and (\cap) sands for natural set union and Fs-union and Similarly ' \cap '. M_A or 1_A sands for largest element of a given complete Boolean Algebra L_A . For all lattice theoretic and relevant Properties one can refer [5],[8],[15],[16],[17].SET, the category of sets with usual maps between crisp sets.CBOO, the category of complete Boolean algebras with complete homomorphism between complete Boolean algebras. $(\prod_{i \in I} A_i, (P_i)_{i \in I})$ is the product of $(A_i)_{i \in I}$ in SET. Meanings of all the following things can known from [2]. (i) SET (ii) CBOO (iii) Fs-Cartesian Product (iv) Axiom choice.

SECTION-1

1.1 Fs-set: : A four tuple of the form $\mathcal{W} =$

 $(W_1, W, \overline{W}(\mu_{1W_1}, \mu_{2W}), L_W)$ is an Fs-set iff, $W \sqsubseteq W_1 \sqsubseteq U$

- (1) L_W is a complete Boolean Algebra
- (2) $\mu_{1W_1}: W_1 \to L_W, \mu_{2W}: W \to L_W$ are mappings such that

 $\mu_{1W_1}|W\geq \mu_{2W}$

(3) $\overline{W}: W \rightarrow L_W$ is defined by

 $\overline{W}x = \mu_{1W_1}x \land (\mu_{2W}x)^c$ for each $x \in W$

Where W is a non-void subset of some universal set U

1.2 Fs-subset: Suppose $\mathcal{W} = (W_1, W, \overline{W}(\mu_{1W_1}, \mu_{2W}), L_W)$ and $\mathcal{U} = (U_1, U, \overline{U}(\mu_{1U_1}, \mu_{2U}), L_U)$ are two Fs-sets. We say \mathcal{U} is an Fs-subset of \mathcal{W} , in symbol, we write $\mathcal{U} \sqsubseteq \mathcal{W}$, iff (1) $U_1 \sqsubseteq W_1, W \sqsubseteq U$

(2) $L_{\rm U}$ is a complete subalgebra of $L_{\rm W}$ or $L_{\rm U} \leq L_{\rm W}$

(3) $\mu_{1U_1} \le \mu_{1W_1} | U_1$, and $\mu_{2U} | W \ge \mu_{2W}$

1.3 ArbitraryFs-unions and arbitrary Fs-intersections For any $(\mathcal{U}_i)_{i \in I}, \mathcal{U}_i = (U_{1i}, U_i, \overline{U}_i(\mu_{1U_{1i}}, \mu_{2U_i}), L_{U_i}) \subseteq$

 $\mathcal{W}=(W_1, W, \overline{W}(\mu_{1W_1}, \mu_{2W}), L_W), i \in I$

(1): $\bigsqcup_{i \in I} \mathcal{U}_i = \phi_{\mathcal{W}}$, for $I = \phi$

Published By:

& Sciences Publication

(2): If $I \neq \varphi, \bigsqcup_{i \in I} \mathcal{U}_i = \mathcal{U} = (U_1, U, \overline{U}(\mu_{1U_1}, \mu_{2U}), L_U)$, where (a) $U_1 = \bigsqcup_{i \in I} U_{1i}^{i \in I}, U = \prod_{i \in I} U_i$

Vaddiparthi Yogeswara, Department of Mathematics, GIT, GITAM Deemed to be University, Visakhapatnam-530045, Andhra Pradesh, India K.V. Umakameswari Research Scholar, Dept. of Applied Mathematics, GIS, GITAM Deemed to be University, Visakhapatnam 530045, A.P, India D. Raghu Ram, Research Scholar: Dept. of Applied Mathematics, GIS, GITAM Deemed to be University, Visakhapatnam 530045, A.P, India Ch. Ramasanyasi Rao, Dept. of Applied Mathematics, MVR DEGREE&P.G College, Gajuwaka, Visakhapatnam-530026, A.P., India K. Aruna kumari, Dept. of Mathematics, GIT, GITAM University Visakhapatnam 530045, A.P,

(b) $L_U = \mathop{\gamma}_{i \in I} L_{U_i}$ = complete subalgebra generated by $\mathop{}_{i\in I}^{\mathsf{Y}} \mathcal{L}_{i}(\mathcal{L}_{i} = \mathcal{L}_{\mathcal{U}_{i}})$

(c) $\mu_{1U_1}: U_1 \rightarrow L_U$ is defined by

$$\mu_{1U_1} x = \left(\bigvee_{i \in I} \mu_{1U_{1i}} \right) x$$
$$= \bigvee_{i \in I_x} \mu_{1U_{1i}} x \text{, where } I_x = \{ i \in I \mid x \in U_i \}$$

 $\mu_{2U}: U \rightarrow L_U$ is defined by

$$\mu_{2\mathbf{U}} x = \left(\underset{i \in \mathbf{I}}{\wedge} \mu_{2\mathbf{U}_{i}} \right) x$$
$$= \underset{i \in \mathbf{I}}{\wedge} \mu_{2\mathbf{U}_{i}} x$$

 $\overline{U}: U \to L_U$ is defined by $\overline{U}x = \mu_{1U_1}x \land (\mu_{2U}x)^{c}$ 1.19.2 Definition (1) : $\prod_{i \in I} \mathcal{U}_i = \mathcal{W}$, for $I = \varphi$ (2): Suppose $\underset{i \in I}{\sqcap} U_{1i} \sqsupseteq \underset{i \in I}{\sqcup} U_i, \underset{i \in I}{\land} \mu_{1U_{1i}} | \left(\underset{i \in I}{\sqcup} U_i \right) \ge \underset{i \in I}{\curlyvee} \mu_{2U_i}$ $\prod_{i \in I} \mathcal{U}_i$ as

$$\begin{array}{l} \prod\limits_{i \in I} \mathcal{U}_{i} = \mathcal{V} = \left(V_{1}, V, \overline{V}(\mu_{1V_{1}}, \mu_{2V}), L_{V} \right) \\ (a') V_{1} = \prod\limits_{i \in I} U_{1i}, V = \bigsqcup\limits_{i \in I} U_{i} \\ (b') L_{V} = \bigwedge\limits_{i \in I} L_{U_{i}} \end{array}$$

(c') μ_{1V_1} : $V_1 \rightarrow L_V$ is defined by

$$\mu_{1V_{1}}x = \left(\bigwedge_{i \in I} \mu_{1U_{1i}}\right)x$$
$$= \bigwedge_{i \in I} \mu_{1U_{1i}}x$$

 $\mu_{2V}: V \rightarrow L_V$ is defined by

$$\mu_{2V}x = \left(\mathop{\curlyvee}_{i \in I} \mu_{2U_{i}} \right) x$$
$$= \mathop{\curlyvee}_{i \in I_{x}} \mu_{2U_{i}}x \text{, where } I_{x} = \{i \in I \mid x \in U_{i}\}$$

 $\overline{V}: V \to L_V$ is defined by

$$Vx = \mu_{1V_1} x \land (\mu_{2V} x)^{c}$$
(3)
$$\prod_{i \in I} U_{1i} \not\supseteq \bigsqcup_{i \in I} U_i \text{ or } \bigwedge_{i \in I} \mu_{1U_1i} | (\bigsqcup_{i \in I} U_i) \not\ge \bigvee_{i \in I} \mu_{2U_i}$$
Define
$$\Box \mathcal{U}_i = \omega_{im}$$

 $\prod_{i \in I} u_i = \varphi_{\mathcal{W}}$ Agree $\prod_{i \in I} \mathcal{U}_i = \varphi_1 = \text{Type-I Void set } \text{if} \prod_{i \in I} \mathcal{U}_i = \Omega_{\varphi}$

Fs-complement of an Fs-subset

1.6 Definition

Consider a particular Fs-set $\mathcal{W} =$ $(W_1, W, \overline{W}(\mu_{1W_1}, \mu_{2W}), L_W), W \neq \Phi$, where

- (i) $W \subseteq W_1$
- $L_W = [0, M_A], M_A$ is the largest element of (ii) L_A

(iii)
$$\mu_{1W_1} = M_A, \mu_{2W} = 0$$
$$\overline{W}x = \mu_{1W_1}x \wedge (\mu_{2W}x)^c = M_A \text{ for each } x$$
$$\in A$$

Given $\mathcal{V} = (V_1, V, \overline{V}(\mu_{1V_1}, \mu_{2V}), L_V)$. We define Fs-complement of \mathscr{B} in \mathscr{A} , denoted by $\mathcal{V}^{C_{\mathscr{A}}}$ for V=W and $L_V = L_W$ as

$$\begin{split} \mathcal{V}^{C_{\mathcal{A}}} &= \mathcal{U} = \left(U_1, U, \overline{U} (\mu_{1U_1}, \mu_{2U}), L_U \right), \, \text{where} \\ (a') \ U_1 &= C_A V_1 = V_1^c \cup W, \, U = V = W \ \text{where} \\ V_1^c &= W_1 - V_1 \\ (b') \ L_U &= L_W \end{split}$$

(c') $\mu_{1U_1}: U_1 \to L_W$ is defined by

$$\mu_{1U_1} \mathbf{x} = \mathbf{M}_{\mathbf{A}}$$

$$\begin{split} \mu_{2U} \colon W &\to L_W \text{is defined by} \\ \mu_{2U} x = \overline{V} x = \mu_{1V_1} x \Lambda(\mu_{2V} x)^G \end{split}$$

 $\overline{U} \colon W \to L_W \text{is defined by}$

$$\overline{U}x = \mu_{1U_1} x \Lambda(\mu_{2U} x)^c = M_A \wedge (\overline{V}x)^c = (\overline{V}x)^c.$$

1.7 Fs-empty set: For some L_{Ω} , $L_{\Omega} \leq L_{W}$, $\Omega_{\varphi} =$

 $(\Omega_1, \Omega, \overline{\Omega}(\mu_{1\Omega_1}, \mu_{2\Omega}), L_{\Omega})$ with conditions

(a) $\Omega \not\subseteq \Omega_1$ or Ω is a void set

(b) $\mu_{1\Omega_1} x \ge \mu_{2\Omega} x$, for some $x \in \Omega \sqcap \Omega_1 \text{or} \mu_{2\Omega}$ is a void function.

And throughout this thesis, this specific \mathcal{X} is denoted by φ_1 and we agree that

$$\varphi_1 \sqsubseteq \mathcal{U}$$
, for any Fs – subset U

1.7 **Definition**: If $\mathcal{Y} = (Y_1, Y, \overline{Y}(\mu_{1Y_1}, \mu_{2Y}), L_Y)$ is an Fs-subset of \mathcal{U} , with the following properties

(a') $\mathcal{U} \sqsubseteq \mathcal{W}$ $(b') Y_1 = Y = W$ (c') $L_{Y} \leq L_{W}$ $(d')\overline{Y}=0 \text{ or } \mu_{1Y_1}=\mu_{2Y}$

Then, we say that \mathcal{Y} is an Type-II Void set and is denoted by φ_2

SECTION-2

$(\mathbf{b}, \boldsymbol{\beta})$ - Object

2.1DefinitionLet $b \in A, \beta \in L_A$ such that $\beta \leq \overline{A}b$. we define a (b, β)-object, denoted by (b, β)itself as follows

for $A \subseteq B \subseteq B_1 \subseteq A_1$, $L_B \leq L_A$, such that $\mu_{1B_1}x$, $\mu_{2B}x \in$ $L_{B}(b,\beta) = (B_{1}, B, \overline{B}(\mu_{1B_{1}}, \mu_{2B}), L_{B})$ $\mu_{1B_1} \mathbf{x} = \begin{cases} \mu_{2A} \mathbf{x}, & \mathbf{x} \neq \mathbf{b}, \mathbf{x} \in \mathbf{A} \\ \beta \lor \mu_{2A} \mathbf{b}, & \mathbf{x} = \mathbf{b} \\ \alpha, & \mathbf{x} \notin \mathbf{A}, \mathbf{x} \in \mathbf{A}_1 \end{cases} \text{And } \mu_{2B} \mathbf{x} = \\ \end{cases}$ $(\mu_{2A}x, x \in A)$ lα, x∉A,x∈B Here $\alpha \in L_A$ is fixed and $\alpha \leq \mu_{1A_1} x$, $\forall x \in A_1$

2.2 $\mathbf{R}(\mathbf{b}, \boldsymbol{\beta})$ **Relation :**For any $(\mathbf{b}, \boldsymbol{\beta})$ objects $\mathcal{B}_1 =$ $(B_{11}, B_1, \overline{B}_1(\mu_{1B_{11}}, \mu_{2B_1}), L_{B_1})$ and $\mathcal{B}_2 = (B_{12}, B_2, \overline{B}_2(\mu_{1B_{12}}, \mu_{2B_2}), L_{B_2})$ of \mathcal{A} , we say that $\mathcal{B}_1 R(b, \beta) \mathcal{B}_2$ if, and only if $\mu_{1B_{11}}x = \mu_{2B_1}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_1 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_2 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_2 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_2 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \forall x \in B_2 \text{ and } \mu_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_2}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_{12}}x, x \neq b \text{ and } \psi_{1B_{12}}x = \mu_{2B_{12}}x, x \neq b \text{ and }$ b and $\forall x \in B_2$ and

Published By:

& Sciences Publication

 $\mu_{1B_{11}}b = \mu_{1B_{12}}b = \beta \vee \mu_{2A}band \mu_{2B_1}b = \mu_{2B_2}b = \mu_{2A}b.$ We can easily show that $R(b, \beta)$ is an equivalence relation

2.3 Fs-point : The equivalence class corresponding to (b, β) is denoted by χ_b^β or (b, β) . We define this χ_b^β is an Fspoint of \mathcal{A} .Set of all Fs-point of \mathcal{A} is denoted by FSP(\mathcal{A}).

2.4 Definition For any $\mathcal{V} \subseteq \mathcal{W}$ $\text{Define } \mathcal{V}^{\sim} = \begin{cases} \Phi & \text{if } \mathcal{V} = \Phi_{\mathcal{A}} \\ \left\{ \chi_{b}^{\beta} | b \in V, \beta \in L_{V}, \beta \leq \overline{V}b \right\} \text{ otherwise} \end{cases}$ where $\mathcal{V} = (V_1, \overline{V}, \overline{V}(\mu_{1V_1}, \mu_{2V}), L_V)$ Since for any $a \in W, \chi_b^\beta \subseteq \mathcal{V}$ if $\mathcal{V} \subseteq \mathcal{W}$ exists.

Hence $\chi_b^0 \in \mathcal{V}^\sim$ for any $\mathcal{V} \subseteq \mathcal{W}$ if \mathcal{V} exists. We call χ_b^0 as trivial Fs-point

SECTION-3

3.1 FsB-Toplogical Space : Suppose $\mu_{1A_1} = 1, \mu_{2A} = 0$ in \mathcal{A} . $\mathfrak{T} \subseteq \mathcal{L}(\mathcal{W})$ is said to be FsB-toplogy if, and only if

1) $(\mathcal{B}_i)_{i \in I} \subseteq \mathfrak{T} \Rightarrow \bigcup_{i \in I} \mathcal{B}_i \in \mathfrak{T}$

2) $(\mathcal{B}_i)_{i \in I}$, I is finite set $\Rightarrow \bigcap_{i \in I} \mathcal{B}_i \in \mathfrak{T}$.

The pair $(\mathcal{A}, \mathcal{T})$ is called an FsB-topological space.

Elements of \mathfrak{T} are called FsB-open ses or FsB-open subset of \mathcal{A} .

3.2 FsB- Product topological Space : $S = \prod_{i \in I} G_i$ with G_i is open \mathcal{A}_{i} .

Every component of RHS is A_i for each $j \neq I$ and at the j^{th} place G_i is there.

 $\mathfrak{G} = \{ S \}$ is called defining FsB-open subbase for FsB-product topology on $\prod_{i \in I} \mathcal{A}_i$.

The FsB-open base $\mathfrak{B} = \{\prod_{i \in I} \mathcal{G}_i | \mathcal{G}_i = \mathcal{A}_i \text{ for all } i \in I - \mathcal{A}_i \}$ $\{i_1, i_2, i_3 \dots i_n\}, i_1, i_2, i_3, \dots i_n \in I\}$

is called defining FsB-open base for the FsB-topology generated by B.

The $\mathfrak{B} = \{\prod_{i \in I} \mathcal{F}_i | \mathcal{F}_i = \mathcal{A}_i \text{ for all } i \neq i_0, s_{i_0} \text{ is closed in } \mathcal{B}_{i_0} \}$ is called defining FsB-closed sets for the Product topology.

The FsB-topology on $\prod_{i \in I} \mathcal{A}_i$ generated by \mathfrak{B} is called FsB-product topology

Let $\mathcal{A}_i = (A_{1i}, A_i, \overline{A}_i(\mu_{1A_{1i}}, \mu_{2A_i}), L_{A_i})$ be a family of FsB-topological spaces.

Let $\prod_{i \in I} \tilde{\mathcal{A}}_i$ be Fs-Cartesian Product of the family $\{\mathcal{A}_i$ $_{i \in I}$.

Let $\mathfrak{G} = \{ S \}$ where $S = \prod_{i \in I} \mathcal{B}_i$ where $\mathcal{B}_i = \begin{cases} \mathcal{A}_i \ i \neq i_1 \\ \mathcal{G}_i \ i = i_1 \end{cases}$ and

 \mathcal{G}_{i_1} be FsB-open in $\mathcal{A}_{i_1}, i_1 \in \mathbf{I}$

Where $\mathcal{G}_{i_1} = \left(\mathcal{G}_{1i_1}, \mathcal{G}_{i_1}, \overline{\mathcal{G}}_{i_1} \left(\mu_{1\mathcal{G}_{1i_1}}, \mu_{2\mathcal{G}_{i_1}} \right), \mathcal{L}_{\mathcal{G}_{i_1}} \right) \mathfrak{B} = \{\mathcal{S}_1 \cap \mathcal{S}_2 \cap \mathcal{S}_3 \cap \ldots \mathcal{S}_n | \mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3 \dots \ldots \mathcal{S}_n \}$

3.3 Theorem : B is an FsB-open base for FsB- product topology on \mathcal{W} .

3.4 Theorem : AnyFsB-topological space $(\mathcal{B}, \mathfrak{T})$ is compact if and only if every non empty family of defining FsB-sub basic closed sets with finite intersection property has nonempty intersection.

3.5 Theorem : $(\mathcal{B}, \mathfrak{T})$ is compact if and only if every non empty family of FsB-sub basic closed sets with finite intersection property has nonempty intersection. Proof: Sufficient to Prove that everynon-empty family of definingFsB- sub basic closed sets with finite intersection property has non-empty intersection.

Consider $\{\mathcal{F}_i\}$, a non- empty family of

non-emptydefiningFsB-sub basic closed sets in($\mathcal{B}, \mathfrak{T}$).

Then for each $j \in J$, $\mathcal{F}_i = \prod_{i \in I} \mathcal{F}_{ii}$ where $\mathcal{F}_{ii} =$ for all $i \in I$ $i \neq i_o$ $(\mathcal{B}_i,$

 $\{\mathcal{F}_{ii_0}, a \text{ sub basic closed set } in \mathcal{B}_{i_0}\}$

Then , for each ithFs-projection $\prod_i : \mathcal{B} = \prod_{i \in I} \mathcal{B}_i \longrightarrow \mathcal{B}_i$

 $\prod_i (\mathcal{F}_i) = \mathcal{F}_{ii}$ is non emptyFsB-sub basic closed set in \mathcal{B}_i .

In Particular, $\prod_{i_0} (\mathcal{F}_i) = \mathcal{F}_{i_0}$ is non-empty FsB-sub basic closed set in \mathcal{B}_{i_0} .

Hence $\{\mathcal{F}_{ji_0}\}_{j \in J} = \mathfrak{F}_{i_0}$ is a nonempty family of nonempty FsB-closed sets in \mathcal{B}_{i_0} .

Also, every finite subfamily of \mathfrak{F}_{i_0} has nonempty intersection.

Since \mathcal{B}_{i_0} is compact, we have $\bigcap \mathfrak{F}_{i_0} = \bigcap_{j \in J} \mathcal{F}_{ji_0}$ is non empty.

Fix
$$\chi_{ai_0}^{\alpha i_0}$$
 in $\mathcal{B}_{i_0}^{\sim}$. Then $(\chi_{ai_0}^{\alpha i_0})_{i \in I} \in$
 $(\prod_{i \in I} \mathcal{B}_i)^{\sim} = \prod_{i \in I} \mathcal{B}_i^{\sim} (3.4)$
Hence $(\chi_{ai_0}^{\alpha i_0})_{i \in I} \in (\bigcap_{j \in J} \mathcal{F}_j)^{\sim}$. So, that $\bigcap_{j \in J} \mathcal{F}_j$ is
non-emptyin $\prod_{i \in I} \mathcal{B}_i$.
Hence $\prod_{i \in I} \mathcal{B}_i$ is compact.

ACKNOWLEDGEMENTS

The authors acknowledge GIT and GITAM administration throughout and GITAM Deemed to be University management - Visakhapatnam for the cooperation.

Published By:

& Sciences Publication

REFERENCES

- 1. Vaddiparthiyogeswara, g.srinivas and biswajitrath ,a theory of fs-sets, fs-complements and fs-de morganlaws, ijarcs, Vol- 4, No. 10, Sep-Oct 2013.
- 2. VaddiparthiYogeswara, BiswajitRath, Ch.RamasanyasiRao, K.V.Umakameswari, D.RaghuRamFs-Sets, Fs-Points, and A Representation Theorem, International Journal of Control Theory and Applications (IJCTA), Volume 10(07), 2017, pp. 159-170.
- 3. VaddiparthiYogeswara ,BiswajitRath, Ch.RamasanyasiRao, D. Raghu Ram Some Properties of Associates of Subsets of FSP-Points Transactions on Machine Learning andArificial Intelligence, 2016, Volume-4, Issue-6,
- Vaddiparthi Yogeswara, Biswajit Rath, Ch.RamasanyasiRao, 4. K.V.Umakameswari, D.RaghuRam, Fs-Sets and Theory of FsB-Topology Mathematical Sciences International Research Journal, 2016 , Volume-5, Issue-1, Page No-113-118.
- G.F.Simmons, Introduction to topology and Modern Analysis, 5. McGraw-Hill international Book Company.
- 6. JamesDugundji, Topology, Universal Book Stall, Delhi.
- George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy 7. Systems: Selected PaperbyLotfi A. Zadeh ,Advances in Fuzzy Systems-Applications and Theory Vol-6, World Scientific Steven Givant• Paul Halmos, Introduction to Boolean algebras, Springer.
- 8 J.A.Goguen ,L-Fuzzy Sets, JMAA, Vol.18, P145-174, 1967
- Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy 9. Sets?, JFM, Vol 5(3), P495-523, 1997, U.S.A.
- 10. VaddiparthiYogeswara, BiswajitRath and S.V.G.Reddy, A Study Of Fs-Functions andProperties of Images of Fs-Subsets Under Various Fs-Functions. MS-IRJ, Vol-3, Issue-1
- 11. VaddiparthiYogeswara, BiswajitRath, Ch.Rama Sanyasi Rao, K. V. Uma Kameswari Generalized Definition of Image of an Fs-Subset under an Fs-function- Resultant Properties of Images Mathematical Sciences International Research Journal, 2015, Volume -4, 40-56
- 12. L.Zadeh, Fuzzy Sets, Information and Control, Vol.8, P338-353, 1965
- 13. Nistala V.E.S. Murthy, f-Topological Spaces Proceedings of The National Seminar on Topology, Category Theory and their applications to Computer Science, P89-119, March 11-13, 2004, Department of Mathematics, St Joseph's College, Irinjalaguda, Kerala.
- 14. Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
- 15. Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
- 16. ThomasJech ,Set Theory, The Third Millennium Edition revised and expanded, Springer

Published By:

& Sciences Publication