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Abstract: For any nonempty family {(𝓑𝒊, 𝕿𝒊)}  of compact 

FsB-Toplogical Spaces, the corresponding Fs-product space is 

also compact. 

 

Index Terms: Fs-Set, Fs-Subset, (b,𝜷) object, Fs-Point, 

FsB-Toplogical Space. 

I. INTRODUCTION 

Axiom choice is not true  in the theory of   L-Fuzzy sets 

.Nistla V.E.S Murthy [10] proved Axiom Choice of fuzzy 

sets in his theory of F-sets. VaddiparthiYogeswara[2] etc … 

developed the theory of Fs-sets with the  goal of introducing 

the complement of a fuzzy set which was not  satisfactorily 

explained by  previous  relevant  theories .Also 

VaddiparthiYogeswara, BiswajitRath ,Ch.RamaSanyaasiRao 

,K.V.UmaKameswari,D.Raghu Ram introduced  the concept 

of FsB-topological Space on a given Fs –subset  of an Fs-set 

and also they introduced FsB-subspace in the same paper 

.Fs-points and Fs-point set FSP( 𝒲)   are introduced by 

VaddiparthiYogeswara etc…[2] and based on Fs-set theory   

they    defined a pair of relations between P(FSP(𝒲))and 

ℒ(𝒲) .   Here FSP( 𝒲 ) stands for Fs-Point set of 

𝒲, ℒ(𝒲) stands for collection of allFs-subsets of 𝒲 and 

P(FSP(𝒲)) is power set of FSP(𝒲) and proved one of them 

is a ‘ ’- complete homomorphism and other is ‘ ’- complete 

homomorphism and searched some properties of these 

relations  between complemented constructed crisp sets and 

Fs-complemented sets through  thesehomomorphismand 

ultimately they proved  a representation theorem connecting 

Fs-subsets of 𝒲 to crisp subsets of FSP( 𝒲 ) via  

homomorphisms.For a given non-empty family of compact 

Fs-toplogicalspaces , we prove in this paper their 

Fs-Cartesian Product space is also compact. Fs-Sets, Fs- Set 

functions etc… in brief are explained in first four sections of  
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this paper. ‘ ’ and ‘ ’ sands for natural set union and 

Fs-union and Similarly ‘ ’. 𝑀𝐴 or 1𝐴  sands for largest 

element of a given complete Boolean Algebra 𝐿𝐴 . For all 

lattice theoretic and  relevant Properties one can refer 

[5],[8],[15],[16],[17].𝕊ET, the category of sets with usual 

maps between crisp sets.ℂBOO, the category of complete 

Boolean algebras with complete homomorphism between 

complete Boolean algebras.(∏ Aii∈I , (Pi)i∈I)is the product 

of (Ai)i∈I in 𝕊ET. Meanings of all the following things can 

known from [2]. (i) 𝕊ET (ii) ℂBOO (iii) Fs-Cartesian Product 

(iv) Axiom choice. 

 

SECTION-1 

 

1.1 Fs-set: : A four tuple of the form 𝒲 =

(W1 ,W, W̅(μ1W1  ,
μ2W), LW) is an Fs-set iff, W ⊑ W1 ⊑U  

(1) LW is a complete Boolean Algebra  

(2) μ1W1
: W1 → LW ,μ2W: W → LW are mappings 

such that  

μ1W1
|W ≥ μ2W 

(3) W̅: W→ LW is defined by 

W̅𝓍 = μ1W1
𝓍 ⋏ (μ2W𝓍 )c for each 𝓍 ∈ W 

Where  is a non-void subset of some universal set U 

 

1.2 Fs-subset: Suppose 𝒲 = (W1, W, W̅(μ1W1,μ2W), LW) 

and 𝒰 = (U1, U, U̅(μ1U1,μ2U), LU) are two Fs-sets. We 

say 𝒰  is  anFs-subset of 𝒲, in symbol, we write  𝒰 ⊑ 𝒲, iff 

(1) U1 ⊑ W1,  W ⊑ U 

(2) LU is a complete subalgebra of LW or LU ≤ LW 

(3) μ1U1
≤ μ1W1

|U1, and  μ2U|W ≥ μ2W 

 

1.3 ArbitraryFs-unions and arbitrary Fs-intersections  

For any  (𝒰i)i∈I,𝒰i = (U1i, Ui, U̅i(μ1U1i
, μ2Ui

), LUi
) ⊑

 𝒲=(W1, W, W̅(μ1W1
, μ2W), LW),  i ∈ I 

(1): ⨆
i∈I

𝒰i = φ𝒲, for I = φ 

 (2): If  I ≠ φ, ⨆
i∈I

𝒰i = 𝒰 = (U1, U, U̅(μ1U1,μ2U), LU),  where 

(a) U1 = ⨆
i∈I

U1i,U = ⨅
i∈I

Ui 

FS-Cartesian Product Topological Space and its 

Compactness 

Vaddiparthi Yogeswara, K.V. Umakameswari, D. Raghu Ram, Ch. Ramasanyasi Rao , 

K. Aruna kumari 



FS-Cartesian Product Topological Space and its Compactness 

 

353 

 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  
Retrieval Number: A10630681S319/19©BEIESP 

(b) LU = ⋎
i∈I

LUi
= complete subalgebra generated by 

⋎
i∈I

Li(Li = LUi
) 

(c) μ1U1
: U1 → LU is defined by 

μ1U1
𝓍 = ( ⋎

i∈I
μ1U1i

) 𝓍 

    = ⋎
i∈I𝓍

μ1U1i
𝓍 , where I𝓍 = {i ∈ I| 𝓍 ∈ Ui} 

μ2U: U → LUis defined by 

μ2U𝓍 = ( ⋏
i∈I

μ2Ui
) 𝓍 

= ⋏
i∈I

μ2Ui
𝓍 

U̅: U → LU    is defined by 

U̅𝓍 = μ1U1
𝓍 ⋏ (μ2U 𝓍)c 

1.19.2 Definition 

 (1) :⨅
i∈I

𝒰i = 𝒲, for I = φ 

 (2) :  Suppose   

⨅
i∈I

U1i ⊒ ⨆
i∈I

Ui , ⋏
i∈I

μ1U1i
| (⨆

i∈I
Ui) ≥ ⋎

i∈I
μ2Ui

 

⨅
i∈I

𝒰ias 

 

⨅
i∈I

𝒰i = 𝒱 = (V1, V, V̅(μ1V1
, μ2V), LV) 

(a') V1 = ⨅
i∈I

U1i , V = ⨆
i∈I

Ui 

(b') LV = ⋏
i∈I

LUi
 

(c') μ1V1
: V1 → LV is defined by 

μ1V1
𝓍 = ( ⋏

i∈I
μ1U1i

) 𝓍 

= ⋏
i∈I

μ1U1i
𝓍 

μ2V: V → LVis defined by 

μ2V𝓍 = ( ⋎
i∈I

μ2Ui
) 𝓍 

    = ⋎
i∈I𝓍

μ2Ui
𝓍 , where I𝓍 = {i ∈ I| 𝓍 ∈ Ui} 

V̅: V → LVis defined by  

V̅𝓍 = μ1V1
𝓍 ⋏ (μ2V 𝓍)c 

 (3)     ⨅
i∈I

U1i ⊉ ⨆
i∈I

Ui or ⋏
i∈I

μ1U1i
| (⨆

i∈I
Ui) ≱ ⋎

i∈I
μ2Ui

 

 Define 

⨅
i∈I

𝒰i = φ𝒲  

Agree 

⨅
i∈I

𝒰i = φ1 = Type-I Void set  if⨅
i∈I

𝒰i = Ω𝜑  

 

Fs-complement of an Fs-subset 

 

1.6 Definition 

Consider a particular Fs-set𝒲 =

(W1 ,W, W̅(μ1W1  ,
μ2W), LW),W ≠ Φ,where 

(i) W ⊆ 𝑊1 

(ii) LW = [0, MA], MA is the largest element of 

LA 

(iii) μ1W1
= MA,μ2W = 0 

W̅x = μ1W1
x ⋀(μ2Wx )c = MA  for each x

∈ A 

Given 𝒱=(V1, V, V̅(μ1V1,μ2V), LV). We define 

Fs-complement of ℬ in 𝒜, denoted by 𝒱C𝒜  for V=W and 

LV = LW as 

𝒱C𝒜 = 𝒰=(U1, U, U̅(μ1U1
, μ2U), LU), where 

(a') U1 = CAV1 = V1
c ∪ W, U = V = W  where 

V1
c = W1 − V1 

(b') LU = LW 

(c') μ1U1
: U1 → LW is defined by 

μ1U1
x = MA 

μ2U: W → LWis defined by 

μ2Ux = V̅x = μ1V1
x⋀(μ2Vx)c 

U̅: W → LWis defined by   

U̅x = μ1U1
x⋀(μ2Ux)c = MA ∧ (V̅x)c = (V̅x)c. 

1.7 Fs-empty set:  For some LΩ, LΩ ≤ L𝑊 , Ω𝜑 =

(Ω1, Ω, Ω̅(μ1Ω1
, μ2Ω), LΩ) with conditions 

       (a)Ω ⊈ Ω1or Ω is a void set 

       (b) μ1Ω1
𝓍 ≱ μ2Ω𝓍 , for some 𝓍 ∈ Ω ⊓ Ω1orμ2Ω  is a 

void function.  

And throughout this thesis, this specific 𝒳 is denoted by φ1 

and we agree that  

φ1 ⊑ 𝒰, for any Fs − subset U  

1.7 Definition:   If 𝒴 = (Y1, Y, Y̅(μ1Y1
, μ2Y), LY) is an 

Fs-subset of  𝒰 , with the following properties  

(a') 𝒰 ⊑ 𝒲 

(b') Y1 = Y = W 

(c')  LY ≤ LW 

(d') Y̅ = 0 or μ1Y1
= μ2Y 

Then, we say that 𝒴 is an Type-II Void set and is denoted by 

φ2 

 

SECTION-2 

(𝐛, 𝛃)- Object 

 

2.1DefinitionLetb ∈ A, β ∈ LA such that β ≤ A̅b. we define 

a (b, β)-object, denoted by (b, β)itself as follows 

forA ⊆ B ⊆ B1 ⊆ A1, LB ≤ LA, such that μ1B1
x, μ2Bx ∈

LB(b, β) = (B1, B, B̅(μ1B1
, μ2B), LB) 

μ1B1
x = {

μ2Ax,
β ∨ μ2Ab

α,
,

x ≠ b, x ∈ A
x = b

x ∉ A, x ∈ A1

  And μ2Bx =

{
μ2Ax,

α,
x ∈ A

x ∉ A, x ∈ B
 

Here α ∈ LA is fixed and α ≤ μ1A1
x, ∀x ∈ A1 

 

2.2 R(𝐛, 𝛃)Relation :For any (b, β)objects  ℬ1 =

(B11, B1, B̅1(μ1B11
, μ2B1

), LB1
) and  

 ℬ2 = (B12, B2, B̅2(μ1B12
, μ2B2

), LB2
)of𝒜, we say that 

ℬ1R(b, β)ℬ2 if, and only if  

μ1B11
x = μ2B1

x, x ≠ b and∀x ∈ B1andμ1B12
x = μ2B2

x, x ≠

b and∀x ∈ B2 and  
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μ1B11
b = μ1B12

b = β ∨ μ2Aband μ2B1
b = μ2B2

b = μ2Ab. 

We can easily show thatR(b, β)  is an equivalence relation 

 

2.3  Fs-point :  The equivalence class corresponding to (b, β) 

is denoted by χb
β
 or (b, β).We define this χb

β
 is an Fs-  

point of 𝒜.Set of all Fs-point of 𝒜 is denoted by FSP(𝒜).  

 

2.4  Definition  For any 𝒱⊆𝒲 

Define 𝒱~ = {
Φ                                                  if 𝒱 = Φ𝒜

{χb
β

|b ∈ V, β ∈ LV, β ≤ V̅b }  otherwise
 

where𝒱 = (V1, V, V̅(μ1V1
, μ2V), L𝑉) 

Since for any a ∈ W, χb
β

⊆ 𝒱 if 𝒱 ⊆ 𝒲 exists. 

Hence χb
0 ∈ 𝒱~ for any 𝒱 ⊆ 𝒲  if 𝒱 exists. We call χb

0  as 

trivial Fs-point 

 

SECTION-3 

3.1 FsB-Toplogical Space : Suppose𝜇1𝐴1
= 1, 𝜇2𝐴 = 0 

in 𝒜. 𝔗 ⊆ ℒ(𝒲)is said to be FsB-toplogy       

if, and only if  

1) (ℬ𝑖)𝑖∈𝐼 ⊆ 𝔗 ⇒ ⋃𝑖∈𝐼ℬ𝑖 ∈ 𝔗 

2) (ℬ𝑖)𝑖∈𝐼 , I is finite set  ⇒ ⋂𝑖∈𝐼ℬ𝑖 ∈ 𝔗. 

The pair   (𝒜, 𝒯)   is called an FsB-topological space. 

      Elements of 𝔗  are called FsB-open ses or FsB-open 

subset of 𝒜. 

 

3.2  FsB- Product topological Space : 𝒮 = ∏ 𝒢ii∈I  with 𝒢i is 

open 𝒜i. 

Every component of RHS is 𝒜i for each j ≠ I and at the jth 

place 𝒢i is there. 

𝔊  = {  𝒮}  is called defining FsB-open subbase for 

FsB-product topology on  ∏ 𝒜ii∈I . 

The FsB-open base 𝔅  = { ∏ 𝒢ii∈I |𝒢i  = 𝒜i  for all i ∈ I  – 

{𝑖1, 𝑖2, 𝑖3 … 𝑖𝑛}, 𝑖1, 𝑖2, 𝑖3, … 𝑖𝑛 ∈ I } 

is called defining FsB-open base for the FsB-topology 

generated by  𝔅. 

The 𝔅 = {∏ ℱii∈I |ℱi= 𝒜ifor all𝑖 ≠ 𝑖0, 𝔰𝑖0
 is closed in ℬ𝑖𝑜

 } 

is called defining FsB-closed sets for the Product topology. 

The FsB-topology on ∏ 𝒜ii∈I  generated by 𝔅  is called  

FsB-product topology 

Let 𝒜i   = (A1𝑖, Ai, A̅i(μ1A1i
, μ2Ai

), LAi
)   be a family of 

FsB-topological spaces. 

Let ∏ 𝒜ii∈I   be Fs-Cartesian Product of the family 

{𝒜i               }i∈I . 

Let 𝔊 = { 𝒮} where 𝒮 =  ∏ ℬii∈I   where ℬi = {
𝒜i 𝑖 ≠ 𝑖1

𝒢i  𝑖 = 𝑖1
 and 

𝒢𝑖1
be  FsB-open in 𝒜𝑖1

, 𝑖1 ∈ I 

Where 𝒢𝑖1
= (G1𝑖1

, G𝑖1
, 𝐺̅𝑖1

(μ1G1𝑖1
, μ2G𝑖1

) , LG𝑖1
) 𝔅  = 

{𝒮1⋂𝒮2⋂𝒮3⋂…𝒮𝑛|𝒮1, 𝒮2, 𝒮3 … . 𝒮𝑛} 

 

3.3 Theorem : 𝔅 is an FsB-open base for  FsB- product 

topology on 𝒲. 
 

3.4 Theorem : AnyFsB-topological space  ( , 𝔗)  is 

compact if and only if every non empty family of defining 

FsB-sub basic closed sets with finite intersection property has 

nonempty intersection. 

 

 3.5 Theorem :( , 𝔗)  is compact if and only if every non 

empty family of FsB-sub basic closed sets with finite 

intersection property has nonempty intersection. 

Proof : Sufficient to Prove that everynon-empty family of 

definingFsB- sub basic closed sets with finite intersection  

property has non-empty intersection. 

Consider{ℱ𝑗}, a non- empty family of 

non-emptydefiningFsB-sub basic closed sets in( , 𝔗)  . 

  Then for each j∈ J , ℱ𝑗  =  ∏ ℱ𝑗𝑖𝑖∈𝐼   where   ℱ𝑗𝑖   =   

{
ℬ𝑖,

ℱ𝑗𝑖0
,

for all i ∈ I i ≠ 𝑖𝑜

a sub basic closed set 𝑖𝑛 ℬ𝑖𝑜

 

 

Then , for each ithFs-projection ∏ : ℬ𝑖  =  ∏ ℬ𝑖𝑖∈𝐼 ⟶ ℬ𝑖  

 

∏ (ℱ𝑗𝑖  ) = ℱ𝑗𝑖  is non emptyFsB-sub basic closed set in ℬ𝑖. 

 

  In Particular,  ∏ (ℱ𝑗𝑖0
 ) = ℱ𝑗𝑖0

 is non-empty FsB-sub basic 

closed set in ℬ𝑖𝑜
. 

 

Hence{ℱ𝑗𝑖0
}𝑗∈𝐽 = 𝔉𝑖0

 is a nonempty family of nonempty 

FsB-closed sets in ℬ𝑖𝑜
. 

 

Also,every finite subfamily of 𝔉𝑖0
 has nonempty 

intersection. 

Since  ℬ𝑖𝑜
 is compact, we have⋂ 𝔉𝑖0

 = ⋂ ℱ𝑗𝑖0𝑗∈𝐽  is non 

empty.  

Fix χ𝑎𝑖0

𝛼𝑖0
in ℬ𝑖𝑜

~
 . Then (χ𝑎𝑖0

𝛼𝑖0)𝑖∈𝐼 ∈

(∏ ℬ𝑖𝑖∈Ι )∼=∏ ℬ𝑖𝑖∈Ι
∼

(3.4) 

Hence  (χ𝑎𝑖0

𝛼𝑖0)𝑖∈𝐼 ∈ (⋂ ℱ𝑗𝑗∈𝐽 ) ∼ . So, that ⋂ ℱ𝑗𝑗∈𝐽  is 

non-emptyin∏ ℬ𝑖𝑖∈Ι . 

Hence ∏ ℬ𝑖𝑖∈Ι  is compact. 
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