
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S, March 2019

892

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

Abstract- For years relational database has been a critical part

of the technology. It has been, and in some cases is still being, the

backbone of the large organizations as well as small one. But

some loop holes in the relation database gave birth to NoSQL

databases. NoSQL is not so newly emerged one but can be

considered as the fast growing one. NoSQL stands for Not only

Structured Query Language. Many NoSQL databases are

available nowadays as per the requirement of the user. In this

review various comparisons of these databases based on different

attributes is combined. Additionally, light is put on few terms

related to NoSQL databases and are explained in detail.

Furthermore, comparison between two most commonly used

NoSQL is reviewed in detail.

I. INTRODUCTION

As the name suggests, NoSQL databases support

unstructured queries with no schema. Article [1] describes

the various models for structuring the databases, which

includes ACID, CAP and BASE. NoSQL uses the BASE

model approach. BASE refers to (i) Basically Available, (ii)

Soft state and, (iii) Eventually consistent. In [1] it has also

been stated that the common problems that exists in both

relational and NoSQL are (i) security issues, (ii) limitations

in scalability and, (iii) problems in the availability of data.

In another article [2],on the basis of the BASE properties,

downsides of the NoSQL have been described as under:

 Not universal as SQL

 Different NoSQL database does different things

 Not as powerful and expressive as SQL

 Not reliable as they are only few years old

 Unlike relational databases, NoSQL is part of only a

small ecosystem with fewer applications.

Although relation databases are very simple which

facilitates their use but the problem with these arose with the

non-uniformity of the growing data. Millons of data is

handled by the organizations and it becomes difficult if

relational database is used. Also, the area of IoT is before

our door and IoT applications are better with NoSQL. To

resolve this non-uniformity and massively growing data,

NoSQL was introduced. NoSQL is majorly used in cloud,

Bid data, IoT or distributed systems. Rigid schema is

avoided in NoSQL and availability, scalability and fault

tolerance are the important factors or characteristics of

NoSQL databases.

MYSQL and MongoDB (NoSQL database) were

compared on the basis of the performance for IoT

applications by[3] and from the study it was found that in

some cases MYSQL is better than the MongoDB while in

Revised Manuscript Received on March 10, 2019.

Rupali Kaur, Computer Science, Lovely Professional University,
Phagwara, India.

Jaspreet Kaur Sahiwal, Computer Science, Lovely Professional

University, Phagwara, India.

others vice-versa was true. So, according to [3], if someone

wants to choose a better database for IoT, it will depend on

the most used query and application requirements.

In another study [4], the author stated the biggest

challenge faced by NoSQL as weak consistency, but with

the advancement and popularity of NoSQL, new

optimizations related to performance as well as other new

features have been added along with the updated iteration

version.

A. NoSQL Database types

There are four major types:

 Key-Value Store – It contains Hash Table of keys &

values. It is a simple database using an associative array

as the fundamental datas model where each key is

associated with only one value. Example- Riak,

Amazon S3 (Dynamo).

 Document-based Store- It contains tagged elements in

the form of documents. Rather than structuring the data

model in rows and columns (table format) as done in

traditional databases, it is kept unstructured leading to

varying schema. This in return provides more flexibility

in data modeling. Example- CouchDB.

 Column-based Store- It contains only one column of

data in the storage block and stores each column

continuously either on disk or in-memory and each left

column will be stored in sequential blocks. Example-

HBase, Cassandra.

 Graph-based-It can be seen as a network database that

uses nodes and edges for storage and representation of

data where nodes represent entities and edge as a

relationship between them. Example- Neo4J.

B. Database Models

There are 3 basic model for database structuring[1].

However we will study about one model in a slight detailed

manner-CAP

 ACID: ACID stands for Atomicity, Consistency,

Isolation and Durability. Introduced by Jim Gray in

1970s, this model was set to ensure reliability of the

database that incorporated it. Atomicity refers to either

all or none property. In other words in a database, either

all transactions are successful or none. Consistency

maintains the integrity of the database system and

ensures that none of the transactions are partially

successful. The state of the database would remain

same at the start as well as at the end of the transaction.

Isolation says that even all the transactions running

A review of comparison between NoSQL

Databases: MongoDB and CouchDB

Rupali Kaur, Jaspreet Kaur Sahiwal

A review of comparison between NoSQL Databases: MongoDB and CouchDB

893

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

together, each transaction should behave independent of

the other ones as if they are the only one been executed

at that time. Durability ensures the availability of the

transactions i.e., even in the event of the system or

hardware or any kind of failure, the result should

remain the same.

 CAP: CAP stands for Consistency, Availability and

Partition-tolerance. CAP theorem was introduced in

2000 by Eric Brewer[5]. It stated the three very

important components. Consistency, as described by the

ACID model, is the same in this model as well.

Availability ensures the availability of the data all the

time. It is equivalent to the Durability from ACID

model. It ensures the availability of the database system

all the time. Partition-tolerance linked to the

availability, this property means that a system can be

divided into numerous partitions and is stable even after

that. Partitions are done in order to make the system

available in the event of failure, making the system fault

tolerant as well. The partitions so made can be local and

remote also. CAP is widely used model for database

structuring, including Amazon and Azure[6].

This theorem can be best described by CAP triangle as

shown in figure 1. The three vertices refer to the CAP

properties C, A and P. The database system can be seen

as a straight line between two vertices. Since a line

from a triangle can formed using only two vertices,

similarly from a CAP theorem only two of the

properties can be incorporated and the third one have to

been traded-off.

Figure 1: CAP theorem

Table I. Trade-off between CAP theorem

S.No. Trade-off Result Description

1. CA Non-

partitioned

Ensures availability

and consistency

2. AP Partitioned System is available

and partitioned but is

not consistence in

terms of writes

3. CP Partitioned System is partitioned

and consistence but

only with read access

so as to compromise

the loss due to

Availability trade off.

However, even being used by large organizations, CAP

theorem had few problems. The major problem was that

due to trade-off, three kinds of distributed systems arose

and there were hardly any differences between CA and

CP [1].

Based on the triangle, there arise three scenarios as

described in Table I.

 BASE: Full formed as Basically available, Soft state

and Eventually consistent, BASE is a flexible form of

ACID model to counter the issues faced by the latter. It

was introduced as the technology was migrating

towards NoSQL approach. Basically available feature

says that if the system or any component of the system

fails, the system will surely be able to give a response

but that response may or may not be able to revert the

consistent data surely. Implies, the basic features of the

system will be available all the times to the users. Soft

state property says that the system will always be in the

soft state i.e., while the system is being updated, the

transactions will still proceed. The system may or may

not be in the static state always, so there are background

changes going on due to eventual consistency, leaving

the system in soft state. Eventually consistent states that

sooner or later all the changes will be propagated to all

the partitions (or replicas) and the system will become

system. Rather like the ACID model, BASE does not

wait for the system to be consistent after every

transaction but ensures that it will be at some point of

time, making the need of strict consistency flexible.

C. Issues with NoSQL Databases

Although NoSQL is fast growing database system, they

have new world issues, just like every coin has two sides

[7]. Some of the security issues [8] are discussed below:

 Grey area: There are very lesser known facts about

NoSQL databases till date. Even though many large

organizations make use of these not so newly

introduced databases, there are some facts that remain

unexplored. Thinking about the scalability feature of

NoSQL, there some wrong notions about it. The actual

truth is that on one side the small organizations can

make use of this technology but on the other side the

large organizations making use of NoSQL may still feel

the need of deploying SQL. Until these areas remain

unexplored, efficient use NoSQL technology cannot be

made.

 Security: Despite the use of efficient structuring model,

the list for the security problems with NoSQL database

is fairly lengthy [9]. As providing security to any

system is incredibly difficult, security remains one of

the biggest challenges of NoSQL [10]. Especially in

case of MongoDB, there is no in-built security till date,

all is user incorporated. Programmer needs to create as

many as possible doors to secure a system but an

intruder or hacker needs only one key to one of these

doors to penetrate into the system. That one chance can

compromise the sensitive data. There have been many

attempts [11] [12] to secure data of NoSQL like using

AES [13] techniques but still security is a challenge for

NoSQL

CA AP

CP

A

C P

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S, March 2019

894

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

 Consistency: Problems with CAP model has already

been discussed previously. As majority of the NoSQL

databases rely on this model, it can already be

concluded that the main problem remains consistency.

Instead of ACID transactions, these databases follow

the concept of eventually consistent. This might provide

high performance but adds the problem of

synchronization between nodes. While the data on one

node may some read/write results, the data on some

other node may show completely different result.

 Scalability: NoSQL is popularly known for its highly

scalable feature. However, scalability can also become

a hurdle on the path to performance. Scalability is

highly dependent on sharding process. Sharding refers

to splitting a database logically or physically and

distributing them among nodes, over a network. Each

split is referred to as a shard. If the sharding is

automated, there is no problem in scaling the database.

But, as not all NoSQL databases support automated

sharding, scaling up or down automatically in these

scenarios becomes a problem and has to be done

manually.

 Inexperience: Even though NoSQL is few years old, it

is in its infant years. Not lot organizations have come

across it still. Due to inexperience, many projects using

SQL had cost the clients way more than it would have if

they incorporated NoSQL. A NoSQL code demanding

project, if written using poor knowledge and experience

of it, will of course cost the client a lot. NoSQL

developers need to evolve in order to avoid such issues..

In spite of rapid development of these databases, the

performance comparison between them is not yet clear. As

of today, 225+ NoSQL databases are available. And all of

them have different implementation, storage facilities,

configurations and optimization techniques, which makes

selection of NoSQL database more challenging. In this

paper, firstly we have compared most widely used NoSQL

databases in brief and then we try to compare two Document

based databases (MongoDB and CouchDB) in detail.

II. RELATED STUDY

With the advancement of Big Data and IoT applications,

use of NoSQL is increasing rapidly. Also the research in this

field is increasing rapidly. For example, [4] describes the

main comparisons between five major NoSQL databases:

Redis (Key value store), MongoDB (Document value store),

CouchDB (Document value store), Cassandra (Column

family store) and HBase (Column family store). Two

experiments were conducted in this research and the result

was analyzed on the basis of two parameters: (1) Data

loading (2) Workloads execution. [4] Concluded that Redis

is suited for loading and executing workloads but not when

faced extremely large amount of data. Document and

column-family databases, showed average performance. It

was also found that master-master mode was more

advantageous over master-slave architectures. Similarly [14]

gave comparison between all four types of NoSQL

databases on the basis of functional and no-functional

features and also on the basis of distributive properties.

In another work [15], MongoDB, CouchDB and

Cassandra were analyzed and compared on the basis of

quantitative measures (under different conditions of

workload and different datasets). It was observed that under

different circumstances and different application

requirements a different database is suitable, so a no

particular better database was given.

In some other works, as in, [16] has reviewed the

comparisons between databases on both qualitative and

quantitative measures and obtained same evaluation that

different database is to be used in different scenarios. [17]

Outlined Google’s Big Table, Amazon’s Dynamo and

Apache’s Cassandra in detail by reviewing the top scientific

publications ranging between 2010 and 2016. It first gives

an overview of above mentioned approaches and how these

big organizations are handling Big data using NoSQL

instead of traditional databases. He compared all above

approaches on the basis of Database Applicability, System

Performance, Scalability, Availability and Data operation

and gave results accordingly [18].

In [19] a functional as well as performable comparison

between different techniques of capturing changed data have

been presented. Techniques like Audit Column, Snapshot

Differential, Trigger Based and Column-Family scan. In this

also it was observed that it is difficult to say that which of

the available techniques is the best. So it is basically at the

end of the developer, the technique he wants to used, taking

into consideration the requirements of the application and

also the limitations and performance of the available

techniques should be taken into account. Other works like

[20] and [21] compare the similar types of NoSQL

databases, Graph based and Document based respectively.

III. COMPARISON OF NOSQL DATABSES

Very close comparative analysis of various NoSQL

databases has been provided in [15] on the bases of

quantitative characteristics and it was observed that different

kind of NoSQL database is suitable for different kind of

application requirement. In another article [14] comparison

between all types of NoSQL databases (key based, column

based, document based and graph based) have been done on

the basis of functional features, non-functional features and

distributive properties. These all are combined under Table

A review of comparison between NoSQL Databases: MongoDB and CouchDB

895

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

II

Table II: Differences between NoSQL databases

S. No. Parameters Key Value store Document Store Column store Graph store

1. Query

performance

High High High Variable

2. Scalability High Variable (High) High Variable

3. Flexibility High High Moderate High

4. Structure Primary key with

some value

JSON in form of

tree

row consisting

multiple

columns

Graph –

entities and

relation

5. Complexity None Low Low High

6. Denormaliz

ation

Applicable NA Applicable Applicable

7. Single

Aggregate

Applicable Applicable Applicable NA

8. Atomicity Applicable Applicable Applicable NA

9. Unordered

Keys

Applicable NA NA NA

10. Derived

Table

NA NA Applicable NA

11. Composite

Key

NA NA Applicable NA

12. Composite

Aggregation

Applicable

(Ordered)

NA Applicable NA

13. Aggregation Applicable Applicable Applicable NA

14. Aggregation

and Group

By

Applicable Applicable NA NA

15. Adjacency

Lists

Applicable Applicable NA NA

16. Nested Sets Applicable Applicable NA NA

17. Joins NA NA NA NA

18. Sharding

and

Partitioning

Auto sharding

and no order

Built in and

order preserving

Auto sharding

and no order

Supports

sharding

19. Scaling Horizontal Horizontal Horizontal Horizontal

20. Replication Relaxed Master

Slave

Relaxed Master

Slave

Selectable

Replication

Factor

Causal

Clustering

using Raft

protocol

(master slave)

Table II combines the comparisons based on different

parameters given by [14]. The comparison is based on

functional, non-functional features and distributive

properties. The functional features include denormalization,

single aggregate, atomicity, unordered keys, derived table,

composite keys, composite and aggregation, aggregation,

aggregation and grouping, adjacency lists, nested sets and

joins. Similarly, distributive features include sharding and

partitioning; scaling and replicationThe non-functional

features include query performance, data scalability, schema

flexibility, database structure and value complexity. It can

be seen that all the databases behave differently under

different conditions and circumstances.

IV. OVERVIEW OF MONGODB AND COUCHDB

MongoDB and CouchDB both are type of Document

based NoSQL database. Document database is also called

document store and they are usually used to store the

document format of the semi-structured data and detailed

description of it. It allows the creation and updation of

programs without the need of referring to the master

schema. Content management and handling of data in

mobile application are two of the fields where document

store can be applied. Other than MongoDB and CouchDB,

other examples of this database include DocumentDb,

Couchbase server and MarkLogic. [21] has already given

the comparison between MongoDB and CouchDB (both of

them are Document stores) on the basis of the

performance. In this section we will be giving the

comparisons between MongoDB and CouchDB on the

basis of few parameters.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S, March 2019

896

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

1. MongoDB: MongoDB was startup of 10gen, originated

in 2007. Coming from the family of Document stores, it is

one of the typical NoSQl, schema-free databases with

comparatively high performance, scalability and is rich in

data processing functions. This open source database is

written in C++ and makes use of dynamic schemas. The

architecture of MongoDB contains documents grouped into

collections on the basis of their structure. This database

makes use of BSON. BSON is the binary representation of

JSON and supports document storage and data interchange.

In MongoDB business subjects can be stored in minimum

number of documents, which can be indexed primarily or

secondarily, without breaking them into multiple relational

ones.

Along with the above mentioned capabilities of

MongoDB, it also provides with the large replica sets

collection where each set can contain more than one copy of

data. In the replica sets, all primary functions (read and

write) are performed on primary set while secondary sets are

used in case of failure of former one. MongoDB

incorporates sharding which makes use of scaling process

horizontally.

The load balancing property of this document store

database is justified by the fact that it runs on multiple

servers, thereby providing duplication of data and balancing

of load. This in return also provides backup during the

hardware failure. It also make use of grid file system which

divides the particular file into different parts and stores them

separately.

Following are some of the common features of

MongoDB:

 Convenience of designing the data model which

reduces the need of joins and provides easy

evolution of schema.

 High performance, as it contains neither join nor

transactions which provide fast accessing and

hence performance is increased.

 High availability due to incorporation of replica

sets which provides backup during failures and also

is highly robust.

 Ease in scalabilty. The sharding property of

MongoDB enables it to perform fast and in

efficient manner in the distributed functions. This

also possible due to the fact that in supports

horizontal scaling of data.

 Language highly rich in query. MongoDB has its

own query language called Mongo query language

which can replace SQL ones. Similarly, utility

functions and map or reduce can replace

complicated aggregate functions.

The architecture of MongoDB contains, (i) client

applications, (ii) drivers, (iii) DBMS Mongod, (iv) data base

routing programs, and (v) data.

MongoDB is currently managed by Inc. MongoDB. Some

companies incorporating MongoDB are Adobe, BBVA,

CERN, Department of Veteran Affairs, Electronic Arts,

Forbes, Under Armour.

2. CouchDB: CouchDB, an Apache Software Foundation

Product and inspired by Lotus Notes, is also an open source

document based NoSQL database which focus mainly on

easy use. It is a single noded database, working exactly like

other databases. It generally starts with the single node

instance but can be seamlessly upgraded to cluster. It allows

the user to run single database on many servers or VMs. A

CouchDB cluster is provides high capacity and availability

as compared to single node CouchDB. It uses Erlang, a

general purpose language. Like MongoDB, it also uses java

script and map/reduce. It stores data in the form of

collection of documents rather than as tables. The updated

CouchDB is lockless which means, there is no need lock the

database during writes. The documents in this database also

make use of HTTP protocol and JSON, along with the

ability to attach non-JSON files to them. So, CouchDB is

compatible with any application or software that supports

JSON format.

REST API is used to write and query the data. It also

offers document read, add, edit and delete. According to

article [21], it uses the ACID model rather than BASE by

MVCC implementation. Just like MongoDB, supports

replication of devices when they are offline. It uses special

replication model called Eventual Consistency. CouchDB is

highly and seriously reliable in terms of data. Single-node

database make use of append-only crash-resistant data

structure and multimode or cluster database can save the

data redundantly so that it can be made available whenever

the user needs it. CouchDB can be scaled along as big

clusters as global clusters to as small ones as mobile

devices. The ability to run on any Android or iOS devices

makes CouchDB to stand out among other databases.

Coming to the CouchDB architecture, it is distributed

which supports bidirectional synchronization. It does not

require any schema as it makes use of unique id.

Although CouchDB follows AP (availability and partition

tolerant) feature of the CAP model, to overcome the traded

consistency, it follows ACID model on the practical basis.

CouchDB is still managed by its founder organization,

Apache Software Foundation. Some of the companies that

incorporate this database are Talend SA, Akami

Technologies, Hothead

Games, Inc., GenCorp Technologies, Vivint Solar Inc.

3. Comparison between MongoDB and CouchDB: As

already mentioned earlier, MongoDB and CouchDB both

are document store database, so rather than differences, they

both share similarities more. Some of the similarities include

the supported languages, indexing and sharding. The

difference between them is very less but still they both can

be compared on some parameters. Both of these databases

were surely built with a different focus but very slight one at

that. Though both can be scaled easily across multiple nodes

but where MongoDB supports consistency, CouchDB

supports availability. Both incorporates the use of replica set

but in a different way. In MongoDB these sets provide strict

consistency which implies that the nodes are divided into

two types: primary and secondary. Primary ones are used to

write and read the operations while secondary ones are used

to provide redundancy in case of hardware failure. But in

CouchDB, eventual consistency is incorporated where the

A review of comparison between NoSQL Databases: MongoDB and CouchDB

897

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

functions can be performed on the nodes without the

agreement of other nodes and futher, it copies the changes

made between the two nodes in the document incrementally

so that they are synced continuously. The detailed

comparison between both the databases on the basis of

querying is explained as under:

MongoDB is generally preferred due to its SQL-like

syntax of the queries rather than mapreduce. Also in the

scenario of dynamic queries same is preferred over the other

one. But if MongoDB being used make use of Mongoose

driver, it will introduce the constraint of same schema

whereas this is not present in the case of Couch DB. This

constraint can be easily avoided if some other MongoDB

Node.js driver is used.

Also, in case of CouchDB for quering purposes an index

is needed which is stored using map function and then the

query can be run using cURL whereas in MongoDB no such

procession is required and the database can be queried

simply using db.<database_name>.<query>({}).

Table III compares the databases on few parameters

namely languages used while developing both databases;

languages supported by both; supported platforms; data

structure of storage; cap features; replication; map reduce

functions of both databases; indexes; query format; sharding

support and license. The data structure of both databases

have already been discussed earlier in this article. Coming to

the replication, MongoDB uses single master replication

with built-in auto-election. On the other hand, CouchDB

offers both master-master and master-slave replication low

latency in accessing the data independent of its location. In

case of indexes, both MongoDB and CouchDB make use of

B-Tree index structure.

Table III: Result & Comparison between MongoDB and

CouchDB

S.

No.

Features MongoDB CouchDB

1. Developmental

Languages

C++, Javascript Erlang

2. Supported Actionscript, C, C, C#,.

 Languages C#, C++, Clojure,

ColdFusion, D,

Dart, Delphi,

Erlang, Go,

Groovy, Haskell,

Java, JavaScript,

Lisp, Lua,

MatLab, Perl,

PHP, PowerShell,

Prolog, Python,

R, Ruby, Scala

ColdFusion,

Erlang,

Haskell, Java,

JavaScript,

Lisp, Lua,

Objective-C,

OCaml, Perl,

PHP,

PL/SQL,

Python,

Ruby, and

Smalltalk

3. Deployment

Platforms

Linux, OS X,

Solaris, and

Windows.

Android,

BSD, iOS,

Linux, OS X,

Solaris, and

Windows.

4. Database

Structure

BSON JSON

5. CAP Features Consistence and

Partition tolerant

Availability

and Partition

(CP) tolerant (AP)

6. Replication Master-Slave Master-

Master

7. Map Reduce Supports; Using

Javascript

Supports;

Using HTTP

and REST

API

8. Query Format db.<database_na

me>.<query>({})

curl-X GET

http://<IP_adr

ess><databas

e_name><que

ry>

9. Mobile

Support

No Mobile

Support

Support

Android as

well as iOS

V. CONCLUSION

In this article we have compared two document based

NoSQL databases- MongoDB and Couch DB. Table III

gives an overview of the main parametric comparisons

between these two databases. As we have seen, priority of

the project will determine the selection of the system. Major

differences include the replication method and the platform

support. Also, from the comparisons it is clear that if

application requires more efficiency and speed, then

MongoDB is better choice rather than CouchDB. If the user

needs to run his database on mobile and also needs multi

master replication than CouchDB is obvious choice. Also

MongoDB is suited better than CouchDB if the database is

growing rapidly. The main advantage of using CouchDB is

that it is supported o mobile devices (Android and iOS)

rather unlike MongoDB. So basically, different application

requirements will require different database based on

scenarios. We have observed that MongoDB is slightly

better than CouchDB as it uses SQL-like structure of

querying and the same is easier in the former one. Also, for

using dynamic queries, MongoDB is far better choice.

Regarding security in both databases, research is still going

on and it is hard to say which of these provides better and

secure environment.

REFRENCES

[1] I. Mapanga and P. Kadebu, “Database Management Systems :
A NoSQL Analysis,” no. 7, 2013.

[2] D. G. Chandra and D. G. Chandra, “BASE Analysis of

NoSQL Database,” Futur. Gener. Comput. Syst., 2015.

[3] S. Rautmare, “MySQL and NoSQL database comparison for

IoT application,” pp. 235–238, 2016.

[4] Y. Fan, “Performance Comparison between Five NoSQL

Databases,” pp. 117–121, 2016.

[5] S. Gilbert and N. Lynch, “Brewer ’ s Conjecture and the

Feasibility of Consistent, Available, Partition-Tolerant Web

Services,” pp. 51–59, 2005.

[6] S. Benefico et al., “Evaluation of the CAP Properties on

Amazon SimpleDB and Windows Azure Table Storage,” 2012.

[7] L. Okman, N. Gal-oz, Y. Gonen, E. Gudes, and A. Cassandra,

“Security Issues in NoSQL Databases,” 2011.

[8] A. Ron, A. Shulman-peleg, and A. P. Ibm, “Analysis and

Mitigation of NoSQL Injections,” 2016.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-7, Issue-6S, March 2019

898

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F03820376S19/19©BEIESP

[9] J. Kumar, M. T. Scholars, and V. Garg, “SECURITY

ANALYSIS OF UNSTRUCTURED DATA IN NOSQL,” pp.

300–305, 2017.

[10] A. Ron, B. Sheba, A. Shulman-peleg, B. Sheba, and E.

Bronshtein, “No SQL, No Injection? Examining NoSQL

Security.”

[11] M. Shih and J. M. Chang, “Design and Analysis of High

Performance Crypt-NoSQL,” pp. 52–59.

[12] M. Ahmadian, F. Plochan, Z. Roessler, and D. C. Marinescu,

“International Journal of Information Management

SecureNoSQL : An approach for secure search of encrypted

NoSQL databases in the public cloud ଝ ,” Int. J. Inf. Manage.,

vol. 37, no. 2, pp. 63–74, 2017.

[13] A. D. P. Jr and A. C. Fabregas, “A Secured and Optimized

Document Management tool using Advanced Encryption

Standard and NoSQL,” pp. 167–170.

[14] A. Gupta, S. Tyagi, N. Panwar, and S. Sachdeva, “NoSQL

Databases : Critical Analysis and Comparison,” pp. 293–299,

2017.

[15] S. N. Swaminathan, “Quantitative Analysis of Scalable

NoSQL Databases,” 2016.

[16] B. G. Tudorica and C. Bucur, “A comparison between several

NoSQL databases with comments and notes.”

[17] S. Kalid, A. Syed, A. Mohammad, and M. N. Halgamuge,

“Big-Data NoSQL Databases : A Comparison and Analysis of

" Big-Table ",” pp. 89–93, 2017.

[18] R. Sheth, “Encrypting Data of MongoDB at Application

Level,” vol. 10, no. 5, pp. 1199–1205, 2017.

[19] F. M. Schmidt, C. Geyer, and A. Schaeffer-filho, “Change

Data Capture in NoSQL Databases : A Functional and

Performance Comparison,” pp. 562–567, 2015.

[20] G. A. P. E, O. S. Pabón, and E. D. E. L. Arte, “A comparison

of NoSQL Graph Databases,” 2014.

[21] S. K. K. B and S. Mohanavalli, “A Performance Comparison

of Document Oriented NoSQL Databases,” 2017.

