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Abstract:--- In this paper, we analyse the master-slave 

coupling for synchronization of two chaotic systems through 

nonlinear control law. The proposed coupling technique is 

illustrated using the 1D Logistic map, 2D and 3D Henon maps. 

The MATLAB simulation results confirm the validity of the 

designed coupling law. Experimental realization of the targeted 

coherent dynamics is presented in this paper using 1D Logistic 

map. 

Keywords:  Chaos, Synchronization, Maps, Master-slave 

coupling. 

1. Introduction 

The study of chaotic synchronization was first reported by 

Yamada and Fujisaka in 1983 [1]. But the problem of 

chaotic synchronization became popular in the scientific 

community after the pioneering work of Pecora and Carroll 

[2] and suggested application in secure communication. The 

important applications of synchronized chaos are being 

explored in secure communication and cryptography [3-8] 

using different types of coupling. In this regard, we need to 

mention different synchronization techniques like complete 

synchronization (CS) [2, 9, 10], phase synchronization (PS) 

[11], antiphase synchronization (APS) [12-14], lag 

synchronization (LS) [15], generalized synchronization (GS) 

[16, 17], partial synchronization [18] and predictive 

synchronization[19], which are studied to understand the 

dynamics of the systems and synchronous phenomena. 

Depending upon the nature of the problem under 

consideration and field of applications, either continuous or 

discrete dynamical systems [3, 4] are used as individual 

oscillators for investigation. The interactions among the 

oscillators of an integrated system are studied by 

introducing different types of coupling strategy, for 

example, diffusive coupling, delay coupling, open-plus-

closed-loop (OPCL) coupling, master-slave coupling, etc. 

The diffusive coupling (nearest-neighbour coupling) has 

been first introduced in a diffusion like process of a physical 

systems [20, 21]. To understand the phenomena of a system 

of interacting oscillators, the diffusive coupling can be used 

to model the oscillator systems for investigation. The delay 

coupling is used to study the interaction among the 

interactive units, which involves certain delay with each 

other, of a dynamical system. Time delay system is an 

important topic of research in the field of electronic 

communication systems [22-24], neuroscience [25], etc. On 

the other hand, OPCL coupling [8, 26] is generally used to 

investigate the synchronized phenomena of a coupled 

system under parameter mismatch cases. Pecora and Carrol 
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[2] popularised the chaotic synchronization by introducing 

master-slave coupling in electronic system. In this 

technique, two systems are considered with same sets of 

equation and parameter values. At least one state variable 

from the master system force or drive the slave system to 

follow the behaviour of the master system, due to this reason 

master system is known as driver system and slave system is 

known as response system. The above coupling mechanism 

have been extensively used in the literature to investigate the 

synchronous phenomena of continuous systems governed by 

differential equations. However, these coupling strategy has 

not been studied in case of discrete systems extensively so 

far.  

Therefore in this article, we investigate the master-slave 

coupling for synchronization of two discrete systems. We 

have used unidirectional coupling between two chaotic maps 

through nonlinear technique to study the synchronized 

behaviour of the concerned maps. The same coupling 

strategy is tested in 1D logistic map, 2D and 3D Henon 

maps through numerical simulation. The experimental 

verification of the numerical observations has been done by 

hardware electronic circuit realization of 1D Logistic map. 

The proposed strategy may be applied in secure data 

communication in electronic [27] as well as in optical 

domain [28] by parameter modulation or chaos masking 

techniques. 

2. Synchronization of chaotic maps 

In this section, we describe a theorem [27, 29] for the 

design of master-slave synchronization rule for chaotic 

maps. 

Theorem 1: If                     , |   (   

  )| = |   ( )|   . Then      0, as             
The theorem states that the equilibrium 0, of the error 

system     , is globally asymptotically stable if and only if 

all eigenvalues of           have magnitude less than 

one. In the above theorem the symbol | | denote the 

magnitude of the eigenvalues of a matrix and the symbol 

   denote the euclidian norm. 

2.1 Synchronization of 1D Logistic map 

We start our discussion with the one dimensional Logistic 

map as master system. The map is given by 

         (     ), (1) 

where the state variable    lies between 0 and 1 and the 

parameter a is a positive number between 0 and 4. The  

master system drives another identical slave system which is 

given by  
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         (     )      . (2) 

Here    is nonlinear control factor that can synchronize    

with   . The error between maser and slave system is 

defined by the following equation. 

           (3) 

Therefore, the difference error between master and slave 

systems is given by 

          –        (        )         (4) 

Rewriting equation (4) to fit the form of the theorem 1 we 

obtained 

       (        )         (5) 

Where     (        ) and        . Thus according 

to theorem 1 we get 

             (        )     . (6) 

The magnitude of eigenvalues of equation (6) is less than 

unity. Since, B in equation (6) is a scalar (1×1 matrix), then 

by taking the eigenvalue of B is α, we can write       
 (        ), where        . Therefore the 

nonlinear control factor    is given by 

         (   (        ))   (7) 

Therefore, the slave system in this case takes the form 

        (     )    (   (        ))   (8) 

Here     indicates the fastest synchronization between 

master and slave system and synchronization get delayed 

with the increasing values of α in both positive and negative 

direction. The system does not synchronize when the 

magnitude of    . 

We iterate the master-slave systems (1) and (8) in the 

chaotic regime of the Logistic map using MATLAB 

software. We have observed synchronized dynamics of the 

master-slave system for different values of α. Fig. 1 shows 

the iteration results for          and        . In Fig. 1a, 

after first few iteration, the superposition of the 

corresponding iterates of the master and slave system 

indicates complete synchronization. Fig. 1b shows the 

steady state pot of   versus    that confirms complete 

synchronization. 

2.2 Synchronization of 2D Henon map 

Now in second example, we consider 2D Henon map as 

master system is given by 

            
       (9a) 

         (9b) 

The corresponding slave system is defined as 

            
            (10a) 

               (10b) 

The difference error between master and slave systems is 

defined as 

          –         (      )               (11a) 

          –                (11b) 

In 2×2 matrix notation the error                 may 

be expressed as 

     (
        

        
) (

   

   
)  (

        

        
) (

   

   
) (12) 

where     (
        

        
),   = (

        

        
),   = (

   

   
) 

and nonlinear control factors are                     

and                         Rewriting equation (11) in 

matrix form we obtain 

      (
  (      )  

  
) (

   

   
)    (

        

        
) (

   

   
).

 (13) 

Comparing equations (12) and (13) we obtain 

            (
  (      )            

          
) (14) 

According to theorem 1, we choose       (      ) 

and                  to obtain a constant matrix B. 

Therefore, the nonlinear control factors can be obtained as 

      (      )    and        The constant matrix 

    (
  
  

)  The magnitude of the eigenvalues   of matrix 

B must be less than unity to obtain complete synchronization 

between master and slave systems. This condition provided 

    √   . The final expression of slave system is 

given below by incorporating nonlinear control law in 

equation (10) as 

            
         (      )    (15a) 

          (15b) 

The numerical iteration of the master-slave systems (9) 

and (15) is done in the chaotic regime to illustrate the 

complete synchronization. Fig. 2a shows the successive 

iterates of the variables    and    of master and slave system 

and it revels the state of complete synchronization for 

        and           It is further confirmed by plotting 

the variables    versus    in steady state condition in Fig. 

2b. Similar representations of variables    and    are given 

in Figs. 2c and 2d. 

2.3 Synchronization of 3D Henon map 

Next a similar exercise is done by taking more complex 

system 3D Henon map. The master system is defined as 

           
      (16a) 

            (16b) 

        . (16c) 

The corresponding slave system in this case takes the 

form 

            
            (17a) 

                (17b) 

               (17c) 

The difference error between these two systems can be 

represented as 
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          –         (      )                 (18a) 

          –                     (18b) 

                      (18c) 

In 3×3 matrix notation the error                 can 

be written as 

     (

            

            

            

)   (

            

            

            

)   ,

 (19) 

where   =(

   

   

   

) and nonlinear control laws are     

                                                 
         and               
                   Rewriting equation (18) in matrix 

notation to fit the matrix equation (19) we obtain 

     

(
  (      )        

   
   

)     (

            

            

            

)   .

 (20) 

Now observing equations (19) and (20) we can write 

            

 (
  (      )                

                

              

). (21) 

We choose       (      ),        ,        , 

                                    , which 

leads to the control laws       (      )          and 

           . Where c is a constant to be determined. 

Using these control laws we obtain 

    (
   
   
   

). 

According to theorem 1, to obtain complete 

synchronization the magnitude of the eigenvalues ( ) of 

matrix B must be less than unity. The eigenvalue equation of 

matrix B is α
3            . For simplicity we take 

   , which leads to          . Using nonlinear 

control law in equation (17) we obtain the final slave system 

as 

            
         (      )           (22a) 

            (22b) 

        . (22c) 

The numerical simulation of the master-slave systems 

(16) and (22) is shown in Fig. 3 for          and    
     . Figure 3a shows the successive iterates of the 

variables    (master) and    (slave), which proves the 

complete synchronization. It is again confirmed in Fig. 3b 

by showing the variation of    with respect to    in       

plane. Similar representations for other variables (  ,   ) and 

(     ) are also shown in Figs. 3c-3d and Figs. 3e-3f 

respectively. In this section, we are able to successfully 

demonstrate the targeted complete synchronization of 

master-slave systems using 1D Logistic map, 2D and 3D 

Henon maps. 

3. Electronic experiment & Results 

The present section describes the experimental realization 

of the above mention master-slave synchronization scheme 

using 1D Logistic map. We have observed complete 

synchronization in a hardware experiment in our laboratory. 

Figure 4 shows the complete experimental circuit diagram 

for two coupled 1D Logistic maps using nonlinear control 

law based on master-slave coupling. Commercially available 

electronic components such as analog multiplier (AD633), 

operational amplifier (TL082), sample-hold circuit (LF398), 

resistors and capacitors are used in the circuit. The used 

multiplier AD633 has an inherent characteristic to scale 

down the output voltage by a factor of 10, that is, if the input 

of the multiplier are A and B then its output will be AB/10. 

Therefore, the state variables    and    are scaled up to a 

factor 10 to avoid small signal error and noisy effect, on the 

other hand the parameter a is also scaled up to a factor of 

2.5 for the same reason (because maximum value of a is 4). 

Therefore, we choose   
                 and    

     . Using these state variables (       ) and parameter 

(  ) the master-slave systems (equations (1)and (8)) can be 

modified as 

Master system:    
  

  

  
  

 (      
 ) (23) 

Slave system:    
  

  

  
  

 (      
 )     

  

  
(    

  
    

 )   
 .    (24) 

Where   
    

    
 . In electronic circuit we have take 

    for the fastest synchronization. In Fig. 4a, the first 

TL082 acts as a subtractor whose inputs are 10,   
  and its 

output is (      
 )  Next themultiplier AD633 produces an 

output 
 

  
  

 (      
 ), since its inputs are (      

 ) and   
 . 

Then the multiplier output is passed through a gain 

adjustment amplifier for four times amplifications. This 

amplified signalis then passes through the second multiplier 

circuit to multiply it with the parameter    to obtain the 

targeted expression of the master system as mention in 

equation (23). Finally, the multiplier output is passed 

through two successive sample-hold circuits to obtain the 

discrete nature of the state variable   
 . A suitable clock 

signal is connected to the triggering input of the first 

sample-hold circuit and the inverted clock signal is used to 

trigger the second sample-hold circuit to get the require 

discrete voltage level of the state variable   
 . The slave 

circuit is similar to that of the master circuit but one extra 

adder circuit is used here to add the nonlinear control signal 

  
  with the output of the sample-hold circuit to obtain 

required state variable   
  as shown in Fig. 4b. The circuit 

diagram of the nonlinear control law is shown in Fig. 4c. 

The used ICs with actual pin numbers and passive electronic 

components (resistors and capacitors) including their values 

are indicated in Fig. 4. Finally, the continuity among the  

different parts of the circuit is indicated through the state 

variables and arrow marks. 
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The hardware experimental results are recorded from the 

points   
  and   

  marked in the master and slave circuit 

using Agilent 54641D digital storage oscilloscope. The 

results are shown in Figs. 5 and 6 for parameter value 

        . Figure 5a shows the complete synchronization 

between master and slave systems in time series view and 

Fig. 5b represents the variation of   
  with respect to   

  in 

  
    

  plane. This data confirms the targeted 

synchronization between master and slave systems. When 

nonlinear control law   
  (Fig. 4c) is not connected to the 

adder circuit of the slave system (Fig. 4b) the slave system 

cannot follow the master system, which leads to 

unsynchronized result as shown in Fig. 6. 

4. Conclusions 

We present a master-slave coupling strategy to achieve 

targeted synchronization between two chaotic maps through 

nonlinear control law. The presented coupling strategy is 

verified through numerical examples using 1D Logistic 

map, 2D and 3D Henon maps. The speed of synchronization 

of this coupling method depends on the magnitude of the 

eigenvalues α of the matrix B, synchronization speed 

increases with the decreasing value of  . Since, iteration of 

maps is much faster than integrating the differential 

equations, the proposed master-slave coupling strategy can 

be very useful to study the synchronous dynamics of large 

chaotic networks. The physical realization of the proposed 

coupling strategy is illustrated in case of 1D Logistic map. 
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Figures  

 
Fig. 1. 1D Logistic map.          and       . (a) Successive iterates of the master and slave systems have 

been shown in red stared solid line and blue circled dashed line respectively. (b) Steady state plot of    versus 

  . 

 

 
Fig. 2. 2D Henon map.       and         . (a) and (c) successive iterates of the master-slave variables 

(     ) and (     ) respectively. Master and slave variables have been shown in red stared solid line and blue 

circled dashed line respectively. (b) and (d) represent steady state plot of    versus    and    versus    

respectively. 
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Fig. 3. 3DHenon map.          and           (a) successive iterates of the master variable (  ) and slave 

variable (  ) have been shown in red stared solid line and blue circled dashed line respectively. (b) Represents steady 

state plot of   versus    in       plane. Similarly, (c) and (e) illustrate the iterates of the variables (  ,   ) and 

(     )  respectively. (d) and (f) represent the variation of    and    with respect to    and     respectively. 
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Fig. 4. Different parts of the electronic circuit of coupled 1D Logistic map. (a) Master system, (b) Slave 

system and (c) Nonlinear control law. 

 

  
 

Fig. 5. Master-slave synchronization result from hardware experiment. (a) Time series view of state variables   
  

(upper waveform) and   
  (lower waveform) for         . (b) The variation of   

  verses   
  in   

    
  plane. 
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Fig. 6. Unsynchronization result from hardware experiment. (a) Time series view of state variables   
  (upper 

waveform) and   
  (lower waveform) for         . (b) The variation of   

  verses   
  in   

    
  plane. 

 


