
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-6, March 2019

 2036

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

PLC Reducer – A Tool to Generate Possible

Reductions in Coupling at Design Level

Aprna Tripathi, Rahul Pradhan, Ankur Chaturvedi

Abstract: (ABS) Coupling and cohesion are the two prime attribute

that define the quality of a software design. High coupling is an

undesirable feature while higher cohesion is enviable property. A

number of software quality parameters like maintainability,

readability, understandability etc. are directly or indirectly related

with coupling and cohesion and thus it become necessary to pay a

great attention towards desirable degrees of coupling and cohesion

during design phase of software development life cycle. In this

paper, an algorithm PLC Reducer is proposed that suggested the

possibilities how the coupling can be reduced in a design and also

generates a redesign for the designed software. A complete

demonstration of algorithm functionality is shown for a project.

Also, algorithm is applied on five different java-based projects and

the amount of coupling before and after applying the algorithm is

shown in the paper.

 Keywords: (ABS) Cohesion, Coupling, PLC, PLC Reducer

I. INTRODUCTION

 In the object-oriented software development [1, 2],

coupling and cohesion are among the key metrics to measure

the quality of software. According to Stevens et al. [3],

coupling is “the measure of the strength of association

established by a connection between two modules.”

Therefore, the stronger the coupling between modules, the

more integrated these are, the more difficult these modules

are to understand, change, and maintain and thus the finally

software system become more complex. Whereas, a module

has strong cohesion if it represents exactly one task of the

problem domain and all its elements contribute to this single

task [4]. High coupling is an undesirable feature while high

cohesion is a demanding property of the software. A number

of software quality attributes like maintainability,

understandability, reusability [5, 6, and 7] are directly or

indirectly depends upon the degree of coupling and cohesion.

One of the leading benefits of low coupling is high reusability

[8, 9, and 10]. Coupling and reusability of any software are

inversely related. To enrich the reusability, only measuring

the coupling of software is not enough, until it is reduced if

there is any possibility at all. This design phase activity shall

lead to software development that is maintainable requiring

lesser testing effort and understandability.

Revised Manuscript Received on December 22, 2019.
* Correspondence Author

Aprna Tripathi, Department of Computer Engineering and Applications,

GLA University, Mathura (U.P), India.

Rahul Pradhan, Department of Computer Engineering and Applications,
GLA University, Mathura (U.P), India.

Ankur Chaturvedi, Department of Computer Engineering and

Applications, GLA University, Mathura (U.P), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the
CC-BY-NC-ND license: http://creativecommons.org/licenses/by-nc-nd/4.0/

Most of the authors focus on removing the cyclic dependency

while reducing the coupling of the component [11, 12, and

13]. Since the quality of software depends on both cohesion

and coupling, thus during reduction of coupling, cohesion

can't be overlooked. It is imperative to give equal focus on

coupling as well as cohesion in the process of coupling

reduction [14]. Any compromise with the cohesion strength

impacts the quality of the software.

Since the quality of software depends on both cohesion and

coupling, thus during reduction of coupling, cohesion can't be

overlooked. It is imperative to give equal focus on coupling

as well as cohesion in the process of coupling reduction [14].

Any compromise with the cohesion strength impacts the

quality of the software.

 The mechanism to reduce the coupling could be in

the form of some change in logic or shuffle of the classes

existing in various packages. This paper proposes an

algorithm 'PLC Reducer' to reduce the coupling. It generates

few suggestions that include the shifting of methods from a

class of one package to the class of other package. When the

suggested changes are incorporated, a fall in the package

level coupling is observed. This is because of reduction of

sub-connection. Thus, these suggestions are used by the

proposed approach to restructure the design and a significant

reduction in the coupling is observed. The decision to shift a

method from one package to another is based on two issues:

When to shift the method and where to shift the method.

A. When to Shift a Method

 For a particular method, the number of calls for this method

from other classes of the same package as well as from other

packages is counted. The number of calls of a method in the

same package is considered as internal call while the number

of calls for a method from other packages is considered as

external call. In case when the count of internal call is less

than that of external call, the method to be shifted is

identified.

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

PLC Reducer – A Tool to Generate Possible Reductions in Coupling at Design Level

 2037

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

B. Where to Shift the Method

After taking the decision to shift a method, we shift the

method into a class of the package that has maximum external

call value. To find the class where we have to move this

method, external call value is analyzed. Since, external call is

the sum of calls of the method through different classes of the

package. Thus, the class that has maximum value of call is

selected for shifting this method.

C. Brief about PLC and PLCoh

To observe the impact of PLC Reducer, a package level

coupling metric PLC [15] and cohesion metric PLCoh [] is

considered for experiment. To understand the PLC and

PLCoh, there is a need to understand the terminology used to

compute the PLC and PLCoh.

C1. Connection

There may be multiple package exists and one package may

be completely used by other package or partially used by

other package. When there is some content of one package is

used by other package, a link is established and such link is

named as connections. Package is considered as a basic

reusable by the software developers. Here, a connection is the

representation of the abstract relationship to show the

coupling between two packages. Thus, connection represents

the number of other package this package is dependent upon.

C2. Sub-Connection

In order to establish a relationship between two packages, the

only way is the relation between classes defined inside these

packages. Similar to the definition of connection, when class-

A of one package uses any method existing in class-B of the

other package, there exists a link from class-A to class-B.

This link is called sub- connection. Sub-connections are

actual relationships that are established between classes of

different packages to reuse the functionalities. Thus sub-

connections aggregate to form connection.

C3. Sub-Connection and Its Weight

A package consists multiple classes and there may be

multiple methods in a class. Then either a sub-connection

may be established due to single call of method or multiple

methods may be used. In order to differentiate these two

situations, weight for each sub-connection is considered in

the proposed work. Following is the process to assign the

weight to these sub-connections:

If there exist Md number of methods in Class-B (CB) of

package P2 and Class-A (CA) of package P1 calls Mc out of

Md number of methods, then the weight of this sub-

connection is defined as shown in equation 1.

 C4. Weight of Connection

There will be existence of connection between any two

packages if at least one sub-connection among classes of two

different packages exists. The weight of connection depends

upon two parameters- number of classes used and the weight

of the sub - connection. Thus, weight of connection is the

multiplication of ratio of class used to the total number of

classes of a package and sum of weights of all the sub-

connections that exist between two packages. Mathematical

expression is shown in equation 2.

C5. Direct Relationship: A relationship between two classes

is said to be direct, i.e. a class directly uses the methods of

other class. As shown in figure1, class C1 directly uses the

method M2 that is defined in class C2.

Figure 1. Example of Direct Relationship

C6. Transitive Relationship: When a class C1 uses the

method of other class C2 that again calls other classes C3 to

complete the functionality. The relation between classes C1

to class C3 is known as transitive relationship. In figure 2,

method M3, defined in class C2 is used in class C1, while

method M3 requires a value M that is returned by method M6

defined in class C3. Thus, the relationship between class C1

and C3 is an indirect / transitive in nature.

Figure 1. Example of Indirect / Transitive Relationship

C7. PLC Formulation

Here, we assumed that P is the set of packages in the software

and the package for which coupling has to be calculated is Pi.

If

 N =total number of packages in the project and

P= set of packages then P= {P1, P2, P3, Pi.....PN}.

To compute coupling for Pi, we examined the connections

between the package Pi and packages {P-Pi} along with their

weight. Mathematical expression is shown in equation 3.

C8. PL Coh Formulation

Let us assume a package P and in which a class named as Ci

exists then

Ri = number of relationships (direct or transitive) related with

class Ci

N = total number of classes in package P

Then,

Cohesion of Class Ci is expressed as

For coupling itself relation it not possible thus number of

classes is considered as N-1 in calculation. PLCoh of package

P is normalized value of Ci Coh for i = 1 to N. Mathematically

PLCoh is shown in eq.5

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-6, March 2019

 2038

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

The paper is dived into four sections. Section 2 presents the

state of art related with coupling reduction. The proposed

algorithm PLC Reducer is discussed in section3. In section 4

the impact on PLC after applying the suggestions is analyzed.

The proposed work is concluded in conclusion section.

II. SATE OF ART

This section presents a survey of leading papers related to the

coupling reduction approaches.

Martin [16] stated that coupling is desirable, because if we

ban coupling between modules, we have to put everything in

one big module. Thus, coupling can only be controlled. It can

be controlled through avoiding the cyclic dependencies

between the modules. To reduce the coupling, author

visualizes the high-level dependencies and then rationalizes

them by separating the interface and implementation in order

to break dependencies.

An approach for automatically optimizing existing software

modularizations by minimizing connectivity among packages

is presented in Abdeen et al. [17]. In this paper cyclic -

connectivity is based on simulated annealing which is a local

search-based technique. Hautus [18] propose a tool namely

Package Structure Analysis Tool (PASTA) to analyze the

modular structure of java programs that is based on two

aspects. Firstly it confirms the Acyclic Dependency Principle

(ADP) to check cycles in the dependency graph. Secondly, if

ADP is confirmed, it restructures the packages using layering

concept i.e. the layer of a package is the maximum length of

a dependency path to a package with no dependency.

A method to restructure a poorly structured module was

proposed by Kim and Kwon [19]. They applied program

slicing to extract tightly coupled sub - modules (processing

blocks), and uses module strength as a criterion to identify

multi - function modules to decide how to restructure such

modules. Module strength is defined in terms of the level of

sharing between processing blocks which was based on the

code implementation,

Most authors focus on removing the cyclic dependency while

reducing the coupling of the component. Since the quality of

software depends on both cohesion and coupling, thus during

coupling reduction phase, cohesion can't be overlooked. It is

needed in the process of coupling reduction [18]. Any

compromise with the cohesion strength impacts the quality of

the software if only focusing on the coupling of the entire

system.

III. PLC REDUCER- THE PROPOSED

ALGORITHM

To reduce the design and make a package more reusable, an

algorithm ‘PLC Reducer’ is developed that generates the

possible suggestion of reducing the coupling as well as

cohesion increments possibilities. PLC Reducer works on the

following principle.

Shift the class that is less cohesive and participates in

incrementing the package coupling. In other words, the class

that is less related in the package where it is defined while

highly demanded by the other packages is a candidate for

shift. Thus to reduce the coupling, such classes are shifted

into those package where they are highly called.

PLC Reducer generates the suggestions on the basis of

coupling and cohesion. The package coupling occurs when a

method of one package is used by other package and the

cohesion exists when the classes of a package are related with

other by using the methods of one another. To reduce the

coupling, those methods are identified which are the major

cause of higher coupling while within the package where

these are defined are less cohesive. PLC Reducer suggests

that to reduce the coupling, such method may be shifted in the

class where they are more used rather than the package where

it is defined. Figure 3 describe the algorithm to reduce the

PLC of the existing system by shifting the methods from one

class to another.

Figure 3. Proposed Algorithm 'PLC Reducer'

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/

PLC Reducer – A Tool to Generate Possible Reductions in Coupling at Design Level

 2039

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

IV. IMPACT OF PLC REDUCER ON PLC

AFTER EMPLOYING SUGGESTIONS

To analyze the impact on PLC after applying the suggestions,

four java based projects are considered. The detailed structure

of projects is shown in figure 4. To explain the impact of

shifting the methods as suggested by PLC Reducer, a project

‘Javaopearation’ which is one among the four projects is

explored in detail. It has three packages: 'Parser', 'Source

Code' and 'Test Case' and 19 classes. 4 shows the relationship

among packages of 'Java operation' project.

Suggestions generated by PLC Reducer algorithm assist in

identifying any reduction of the PLC for the existing system.

The format of the suggestions for project 'Java operation' is

shown in 5.

After employing the suggestions, few relationships between

packages either disappear or get added and the same is shown

in the 6.

Figure 7 demonstrates the impact of applying suggestions that

is the outcome of algorithm 'PLC Reducer' on the values

computed for PLC. Modified PLC (MPLC) is the coupling

observed after the changes suggested by PLC Reducer are

incorporated in the project. The same procedure is carried out

for other four projects Lamistra, Anagram Game, Anagram

Game _Modified and Shipment.

Figure 7 shows the PLC for packages of project as well as

average value of PLC & MPLC of the project after employing

the suggestions generated by the algorithm 'PLC Reducer'.

From figure Error! Reference source not found.7 and 8,

results establish that there a significant change in PLC and the

average reduction in PLC is 46.86 %, thus validating the

motive of 'PLC Reducer' algorithm.

Figure 4. Package Diagram for Project - 'Java operation'

Figure 5. Output of Algorithm ' PLC Reducer ' for Project 'Java operation'

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-6, March 2019

 2040

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

Table 1. Summary of PLC and MPLC for Projects

Project LOC Package PLC MPLC
Project Average

No. of Sub -

connections
%

reduction

in PLC PLC MPLC Before After

Java

operation
899

Test Case 1.33 0.4

0.55 0.2

4 2

63.60% Parser 0.33 0 1 0

Source Code 0 0.2 0 1

Lamistra 4932

Editor 0.39 0.28

0.72 0.52

10 8

27.70%

Stratgo 0.25 0.19 3 2

Server 1.15 1.7 22 28

Player 1.8 1.6 36 31

Remote 0 0 0 0

Anagram

Game
395

Lib 0 0
0.3 0.25

0 0
17%

Ui 0.6 0.5 1 1

Anagram

Game 402
Lib 0.5 0.2

0.25 0.1
0 0

60%

_Modified Ui 0 0 1 1

Shipment 792

Shipment 0.4 0

0.73 0.25

1 0

65.75% Shipment

Company

Detail

1.06 0.5 4 1

Figure 6. Package Diagram for Project - 'Javaoperation' after Employing Suggestions

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/

PLC Reducer – A Tool to Generate Possible Reductions in Coupling at Design Level

 2041

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

Figure 7. PLC and MPLC for Various Packages of Six Projects

Figure 8. Average PLC & MPLC of Projects

V. CONCLUSIONS

This paper proposes an algorithm 'PLC Reducer' that is used

to reduce the PLC in case of faulty design. The package

coupling occurs when a method of one package is used by

other package and the cohesion exists when the classes of a

package are related with other by using the methods of one

another. To reduce the coupling, those methods are identified

which are not cohesive within the package and are used by

other package. This is because of reduction of sub-

connection. The proposed PLC Reducer algorithm suggests

that to reduce the coupling, such method may be shifted in the

class where these are more used rather than the package

where it is defined.

To validate the objective of the 'PLC Reducer' algorithm, four

java projects are considered. After employing the

suggestions generated by the algorithm 'PLC Reducer', the

result shows that there a significant change in PLC and the

average reduction in PLC is about 46.86 %. Also the impact

of PLC Reducer on PLCoh is analyzed and it is found that

either PLCoh increases or remains unchanged, thus validating

the 'PLC Reducer' algorithm.

REFERENCES

1. Grady Booch. 1993. Object-Oriented Analysis and Design with

Applications (2nd Ed.). Benjamin-Cummings Publ. Co., Inc.,

Redwood City, CA, USA.
2. Peter Wegner, Concepts and paradigms of object-oriented

Programming. SIGPLAN OOPS Mess. 1, 1 (August 1990), pp. 7-87,

1990.
3. W. Stevens, G. Myers, L. Constantine, Structured Design, IBM

Balagurusamy, Programming in ANSI C, Tata McGraw-Hill

Education, 2008, ISBN 9780070648227
4. Systems Journal, 13 (2), pp. 115-139,1974.

5. T. Sheldon, K. Jerath, and H. Chung. Metrics for maintainability of

class inheritance hierarchies. Journal of Software Maintenance and
Evolution: Research and Practice, 14(3), pp. 147–160, 2002.

6. Jin-Cherng Lin; and Kuo-Chiang Wu, "A Model for Measuring

Software Understandability,". CIT '06. The Sixth IEEE International

Conference on Computer and Information Technology, pp.192-19,

2006.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-6, March 2019

 2042

Published By:

Blue Eyes Intelligence Engineering
& Sciences Publication (BEIESP)

Retrieval Number: F2530037619/19©BEIESP

Journal Website: www.ijrte.org

7. Jin-Cherng Lin; and Kuo-Chiang Wu, "Evaluation of software
understandability based on fuzzy matrix," IEEE International

Conference on Fuzzy Systems, FUZZ-IEEE 2008. pp.887-892, 2008

8. Gui Gui and Paul D. Scott. "Ranking reusability of software
components using coupling metrics", Journal System and Software,

pp. 1450-1459, 2007.

9. G. Gui and P. D. Scott., "Coupling and cohesion measures for
evaluation of component reusability", International workshop on

Mining software repositories(MSR '06). ACM, New York, NY, USA,

pp. 18-21, 2006.
10. Gui Gui; and Scott, P.D., "New Coupling and Cohesion Metrics for

Evaluation of Software Component Reusability,", The 9th

International Conference for Young Computer Scientists ICYCS, pp.
1181-1186, Nov. 2008

11. Juergen Rilling and Tuomas Klemola, "Identifying Comprehension

Bottlenecks Using Program Slicing and Cognitive Complexity
Metrics", Proceedings of the 11th IEEE International

Workshop on Program Comprehension (IWPC’03), 2003

12. Klemola, T., “A cognitive model for complexity metrics”,
Proceedings of the 4th International Workshop on Quantitative

Approaches in Object-Oriented Software Engineering, pp. 1-7, 2000.

13. Mayrhauser A., and A. M. Vans, “Program Understanding Behavior
During Adaptation of Large Scale Software”, Proceedings of the 6th

International Workshop on Program Comprehension, IWPC ‘98, pp.

164-172, 1998.
14. M. Fowler. "Reducing coupling", IEEE software, 2001.

15. Tripathi, A. & Kushwaha, D.S. “A metric for package level coupling”
CSIT (2015) 2: pp 217–233

16. Martin R., "Object Oriented design quality metrics: an analysis of

dependencies", ROAD, 1995.
17. Hani Abdeen, Stephane Ducasse, Houari Sahraoui, and Ilham Alloui.,

"Automatic Package Coupling and Cycle Minimization", In

Proceedings of the Working Conference on Reverse Engineering
(WCRE '09). IEEE Computer Society, Washington, DC, USA, pp.

103 - 112, 2009.

18. Hautus E., "Improving Java software through package structure
analysis", In Proc. International Conference on Software Engineering

and Applications, Cambridge, USA, pp. 4 - 6, 2002.

19. Hyeon Soo Kim, Yong Rae Kwon, And In Sang Chung, "

Restructuring programs through program slicing", International

Journal of Software Engineering and Knowledge Engineering, Vol 4,

pp. 349, 1994.
20. Aprna Tripathi, Manu Vardhan, and Dharmender Singh Kushwaha, "

Package Level Cohesion and its Application", Fifth International

Conference on Advances in Communication, Network, and
Computing – CNC 2014, Elsevier, Chennai, Feb 21-22, 2014

21. M. Fowler. "Reducing coupling", IEEE software, 2001.

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/

