
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7, Issue-6, March 2019

513

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org



Abstract: Predicting software reliability means gauging the

future occurrences of failures in software in order to align the

process of the software maintenance. This paper presents a model

based on FKNN (Fuzzy k-Nearest Neighbor) and nature inspired

Glowworm swarm optimization (GSO) to understand the

relationship between the data of software failure time and the

nearest n failure time and finally predict the reliability of the

software. Glowworm-Swarm Optimization (GSO) is used to search

finest combination of weights aimed to obtain maximum

regression accuracy and fuzzy k-nearest neighbor (FKNN) to

allocate the degree of membership to various software metrics

using fuzzy logic concepts. The performance of the proposed

model has been compared with the known existing models to

evaluate the prediction efficiency of GSO- FKNN.

Index Terms: Fuzzy Membership function, Glowworm swarm

Optimization (GSO), K-Nearest Neighbor (KNN), Software

Reliability Prediction (SRE), MAE (Mean-Absolute Error), MSE

(Mean-Squared Error)

I. INTRODUCTION

Now a days, we are surrounded by different types of

software’s who directly or indirectly lays impact on our

everyday tasks and decisions. However, with the development

of software industry, tremendous growth in the size and

costing of the software, large amount of efforts and time in

development of software was noted [22]. Since human are

unequivocally reliant on the software system in everyday life,

any issue related to software or system failures results in

diminishing customer satisfaction especially in safety critical

system. To avoid such situation, considering the process of

forecasting software failures during the development phase

was proposed [21]. During research it was observed that

majority of faults are found in common modules and

deliberate efforts on fault removal from common modules

will be beneficial [16]. Later on it was noted that the focused

study of the failure dataset can work as a platform to build

software reliability prediction model applicable on

forthcoming software projects [6]. Software reliability

modeling is important since the software is utilized in varied

Revised Manuscript Received on 30 March 2019.
* Correspondence Author

 Shailee Lohmor*, Research Scholar, Research & Development

Centre, Bharathiar University, Coimbatore, India.

Dr B B Sagar, Birla Institute of Technology, Mesra-Ranchi , India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

area of numerous applications. To produce reliable, efficient

and flexible software products at the resulting stage, it plays a

major role in providing path for establishing, handling and

preserving the software was discovered [3]. Past data research

have demonstrated that the effect of software defects is

experienced globally which influence us both financially and

on a human side too was noted by P. K. Kapur [12].

Therefore, software reliability prediction plays vital role and

has become a major research area in software engineering. S.

Chatterjee [18] noted that whenever a functional unit fails to

perform its defines function it is termed as failure and a

methodology to analyze these failures are termed as software

reliability model. The most essential task in software

reliability prediction is the prediction of parameter. There are

two types of techniques involved in the prediction of

parameters namely, LSE (Least Square Error) and MLE

(Maximum Likelihood Estimation) were explained [2].

Software Reliability Growth Models (SRGMs) are used in

combination with removed faults in order to measure the

reliability of the software more efficiently. The parameters

which are appropriate to the model are calculated by both

least square and first-order differential techniques [24]. In

earlier works, recurrent architecture and ensemble model

which is based on the concepts of Genetic-Programming (GP)

and Group Method of Data Handling (GMDH) has

participated in the accurate prediction of software was

discovered by Ramakant [17]. Reliability of the software was

predicted based on multi-layer Feed Forward Artificial

Neural Network (FF-ANN) namely Logistic Growth Curve

Model. The FF-ANN was carried out through the presence of

network of hidden neurons. By taking advantage of the

network’s weights, a neuro-genetic approach is also presented

for reliability prediction [14]. The approaches used earlier for

predicting the software reliability are mostly based on

statistics which to a large extent resulted in unsatisfactory

performance in terms of prediction. Thus, all the recent

research introduced machine learning techniques like Data

mining, Naïve bayes algorithm, Support vector machine

(SVM), and ANN etc. was noted by Hiroyuki Okamura [7]. In

spite of the fact that software faults have been contemplated

utilizing these techniques, there are still numerous parts of

flaws staying hazy.

Enhancing Software Reliability Prediction based

on Hybrid Fuzzy k-Nearest Neighbor with

Glowworm Swarm Optimization (FKNN-GSO)

Algorithm
Shailee Lohmor, B. B. Sagar

https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Enhancing Software Reliability Prediction based on Hybrid Fuzzy k-Nearest Neighbor with Glowworm Swarm

Optimization (FKNN-GSO) Algorithm

514

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

For predicting the efficiency of the software accurately, a

support vector regression technique is applied. The

parameters of SVR should be selected carefully for

calculating the reliability more exactly. The defect datasets

are partitioned into training and test subsets during the

selection of parameters. However the calculation of SVR

parameters is a critical task. Although several approaches

have been exploited, they contain some drawbacks were noted

by WeiZhao [23] and Cong Jin, [4].

II. LITERATURE REVIEW

The Component-based Software systems (CBSSs)

introduced by Kirti Tyagi and Arun Sharma [10] is a

Rule-based approach which faced difficulty in estimating the

reliability exactly because it was a real-world event. To

overcome this, two types of basic soft computing methods

was utilized here namely, fuzzy computing and probabilistic

computing. These methods were introduced based on four

factors. The first factor was the reusability. This was defined

as the usage of a component again and again in various

applications. The second factor was the operational profile.

Here an entire set of activities were contained and also the

occurrence for the expectation was included. The third one

was the dependability of the component. Here the output of

one component was used as the input for the next. The last one

was the complexity. It was given by the amount of

components and the inter connection between them. The

proposed fuzzy computing contains three phases. In the first

phase, the classification tables were converted into

continuous classifications. Then at the second phase, an

inference engine was utilized to handle those classifications.

At last, these fuzzy numbers were converted into single real

valued numbers in the final phase.

Ahmet Okutan and Olcay Taner Yildiz [1] introduced

concept of Bayesian networks to predict defects in the

software. In order to calculate the defects in software, they

utilized two metrics. Firstly for the Number of Developers-

NOD (Number of Children) and secondly for the Source Code

Quality-LOCQ (Lack of Coding Quality) was utilized. To

identify the incompleteness, LOCQ was used. In NOD, the

knowledge about the developer was contained. Using this

knowledge, the interconnection between the number of

developers and the length of errors which can be affected

easily can be identified. The connection between the metrics

and the proneness of faults were decided by the Bayesian

networks. The expectation of errors to occur at the border was

also defined by the Bayesian networks. In Bayesian network,

a graph was contained with a combination of vertices (V) and

edges (E). Here a metric was denoted by V and the

interconnection between the two metrics and defectiveness

was denoted by E. In the event that an edge (E) was available

from metric m1 towards defectiveness then this would imply

that defectiveness was powerful on metric m1.

Correspondingly, if an edge (E) was available from metric m2

towards m1 then this would imply that m1 was powerful on

metric m2 and so on.

A Time dependent fault detection and fault removal model

was designed by Mengmeng Zhu and Hoang Pham [11] for

predicting software reliability. The estimation of dependent

faults, removal of imperfect defects and the total number of

defects, a software reliability model known as NHPP

(nonhomogeneous poisson process) was presented. The

removal of faults, detection of faults etc. were done based on

the programmer’s ability, types of faults and programming

complexity. The model parameters can be calculated by

applying the genetic algorithm (GA). In this approach faults

were depended on the faults identified in the previous stage

and can be eliminated during detection phase. But in some

cases faults were not visible at the testing phase instead it will

be visible only at the operation phase. A Fuzzy Analytic

Hierarchy based approach for Structure-based software

reliability allocation was introduced by Subhashis Chatterjee

et.al [19]. The reliability of software was estimated during the

design phase of the software. The view point of the user was

integrated and a model for software reliability allocation was

introduced. In this model, the success of reliability can be

guaranteed. For allocation of reliability, in this method, the

communication among users, software engineers and

programmers was enhanced. With the help of our proposed

model, the reliability can be estimated at the planning and

design phase itself. To split the problem from higher level to

lower level, a hierarchical structure was developed. The entire

process was used to determine the parameters of the

Hierarchy. A Multi-Objective Optimization based approach

proposed by Dr. M. Sangeetha et.al [5] aimed at Software

reliability allocation for improving quality considered factors

like reliability, cost and schedule were taken into account and

an effective software reliability allocation method was

developed. Here the reliability of the software was increased

by various software reliability models, reliability evaluation,

debugger employment, internal quality factors and the

estimation of computation results. During the allocation of

reliability of the software, a multi objective optimization

technique was introduced which was supported by both the

effectiveness of resources and schedule planning. In this

proposed optimization technique, reliability of the software

was increased and the factors like cost and schedule were

decreased. Software architecture, data of software failure and

project information were the three inputs utilized. The

information about the number of modules contained in the

software was given in the software architecture. The

requirements like reliability goal, budget and schedule were

included in the project information. The parameters of the

software reliability models can be calculated by the failure

data.

III. SOFTWARE RELIABILITY MODEL BASED ON

GSO OPTIMIZED FUZZY KNN FOR RELIABILITY

PREDICTION

Software-Reliability is defined as the process of sudden

occurrence of successful executions of an input state which

was selected from the input space under specified operating

conditions.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7, Issue-6, March 2019

515

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

To construct and preserve the quality of software, the process

of predicting the software reliability plays a major role. Its

main aim is to eliminate the number of failures caused in a

system during development stage because these failures will

reduce the performance. The estimation of reliability of

software is a critical step because the accuracy varies from

one application to another and also there will be increased

cost. To overcome this type of problems, several types of

Software-Reliability-Growth-Models (SRGMs) have been

utilized for predicting the reliability of the software. The two

common types of SRGMs are the parametric and the

non-parametric model. In parametric model, the

nonhomogeneous poisson process (NHPP) is utilized while in

non-parametric model various machine learning and soft

computing techniques are utilized.

The statistical independence between consecutive software

failures is considered as assumption in majority of the

currently available models for predicting software. However,

there is a question mark till now on predicting reliability of

software and addressing this problem will be considered as

motivation. Hence this research work plans to develop an

efficient model for predicting software reliability aimed at the

determination of reliability of software.

Choosing k as the

number of data s

for learning

Determine the

Kernel Width r

Determine the

value of m

Using the first k

failure data s for

KNN learning

Make predictions

Data s scaling back

Predicting the

(k+d)th software

failure time

Choosing Kernel

Functions

Fuzzy software metric

membership function

 Accumulated

 NASA software failure

time data

Fig. 1. Software Reliability Model process based on KNN

Software reliability prediction is core task among the

processes of software development. Constructing powerful

reliability prediction model is a key element to make good

reliable software products. Recently, Fuzzy control systems

were largely used to solve nonlinear prediction problems in

many fields. Existing methods of predicting software

reliability suffer from poor performance for accurate failure

estimation. In this research work an efficient model for

software reliability prediction has been proposed on an

adaptive fuzzy k-nearest neighbor (FKNN), where we

allocate the degree of membership to various software metrics

using fuzzy logic concepts. Assuming the distance of its

k-nearest neighbors, the fuzzy strength parameter ‘k’ and the

neighborhood size ‘m’ are adaptively specified by the

Quantum Glowworm Swarm Optimization (QGSO)

algorithm. In our proposed model to calculate the reliability

‘R’ for the software detect data set we used the number of

failures, number of test cases and time interval. In existing

approach of reliability prediction, reliability ‘R’ is calculated

only by using number of failures and time interval.

To achieve parameter optimization for FKNN, the task of

GSO algorithm is to determine the very much discriminative

features for reliability prediction are subset from software

failure dataset. Further to control the ability of GSO algorithm

in the local and global search an adaptive Control Parameter

is used including acceleration coefficients and inertia weight.

The creation of population of worms is randomly created

by GSO algorithm in which each worm is a candidate subset

of features. Each candidate is encoded with its Luciferin value

and its fitness is assessed using FKNN. In addition, the

proposed model has reduced the computational time by a

large margin owing to its parallel implementation. The

proposed software reliability prediction model, named

GSO-FKNN has been implemented on Matlab working

platform and the experimental results compared with existing

techniques.

A. Reliability Prediction of SRGMs

SRGM can be utilized to comprehend the idea of how and

why software fails and what are the methodologies ought to be

utilized to measure the software reliability. This software

failure dataset is used to conclude the readiness of the

software to finally launch. The approach is aimed to capture

the system’s test data in order to forecast the number of

failures.

 The SRGM used during the

Enhancing Software Reliability Prediction based on Hybrid Fuzzy k-Nearest Neighbor with Glowworm Swarm

Optimization (FKNN-GSO) Algorithm

516

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

fault removal process are discrete time model and continuous

time model. The former is based on the number of test cases

whereas the latter uses the CPU time as the basic parameter.

The basic models that are based on the software fault data are

as follows:

Fig. 2. Types of SRGM

A. Determination of Software Metrics

Majority of software-metrics like the object-oriented

metrics or the process-oriented metrics have been used to

predict software defect because as per the recent studies

object-oriented metrics and process-oriented metrics are

efficient in analysing and predicting faults as compared to

traditional size-complexity metrics. In the recent researches

the Fuzzy inference systems (FIS) are used to make decision

making simpler so that the real time problem can be directed

to make a decision and act accordingly. The FIS are aimed to

reinforce the process of human reasoning by means of Fuzzy

logic (If-Then rules). The proposed model incorporates Fuzzy

inference system (FIS) to build development of membership

function. The dataset for the study is from PROMISE

Software Engineering Repository KC2 data set which

contains 21 software metrics whereas on the basis of earlier

research it was noted that only 13 software measurements

holds major role in fault prediction. The method used for

creation of fuzzy sets for static code software metrics is

depicted in the figure ---

Fig. 3. Creation of Fuzzy Sets

A. k-NN for regression

K-Nearest Neighbor (k-NN) is a Machine-Learning (ML)

algorithm used to group the input data on the basis of k nearest

neighbors. The algorithm is very simple, effective and

non-parametric. K-NN categorizes its data during the testing

phase rather than training phase thus is called as lazy learning

algorithm. K-NN being a lazy learning method makes its

adaptable to the changes however on the other hand it takes

larger computation time during testing. K-NN is used for

regression and classification.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7, Issue-6, March 2019

517

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

When K Nearest Neighbour (K-NN) is used for regression

problems then the prediction is based on the average of the

K-most similar instances. Thus the choice of K is important in

building the K-NN model. To obtain estimates of the model

parameters that are unknown we use cross validation

technique. In order to work on regression we use k-NN to

evaluate t
x

 (testing point) which means weighted average of

the closest training points. A kernel function is incorporated

to evaluate the closeness of testing point and finally calculate

weight of each neighbour. Consider the training dataset be

},......,,{
21 M

xxxX 
which has M training points and all

these holds N features. The weighted Euclidean distance is

used to capture the closeness of training point with the testing

point where number of features is denoted as N, weight n
w

which ranges between
10 

n
w

is assigned to nth feature.

The formula is expressed as

 


N

n
nintnit

xxwXXd
1

2

,,
)(),(

 (1)

Summarising we can say that entire approach reflects the

weight of the feature which signifies the importance of the

feature.

In the proposed approach Glowworm-Swarm Optimization

(GSO) is used to search finest combination of weights aimed

to obtain maximum regression accuracy. Further, as a kernel

function we have used the Gaussian Radial Basis Function

(RBF) that decays as an exponential function of the difference

between two data points (for e.g., the weighted Euclidean

distance in our case). The Gaussian Radial Basis Function

(RBF) is expressed as

    


/,

)(

)(, it xxd

it
exx



 (2)

Where β refers to Gaussian Decay Factor and is set to half

of the mean distance between training points and their

k-nearest neighbors [18].

B. Feature Weighting with GSO

With the aim to maximize the regression accuracy, an

optimal feature weight vector is determined referred as

Feature Weighting. Root Mean Square Error (used as Error

measure) indicates the optimal combination of weights. The

RMSE is evaluated using k-Fold Cross Validation (CV) and

the steps are depicted in the figure 4.

Fig. 4. RMSE evaluation using k-fold cross validation

C. Optimization of the Weight

To differentiate feature selection from the feature

weighting, the problem of optimization of the weights is

framed as Minimize
)(w

CVCV
 

 ,subject to

Nnw
n

,......,2,1,10 
 (3)

In addressing the problem of weight optimization the

proposed approach incorporates Glowworm-swarm

optimization (GSO) algorithm [25] as depicted by Eq. (4).

The agents i in the algorithm are glowworms that carry a

luminescence quantity called luciferin
  tl

i along with

them. These agents are randomly deployed initially in the

search space. Using the objective function the fitness of the

glowworms is evaluated and broadcasted to the neighbors.

The agents identify each other and move using a probabilistic

mechanism and comparing luciferin values. The algorithm

follow three phases:

Phase 1: Initially the luciferin value of all glowworms

remain same. Luciferin is updated on the basis of the function

values of their positions where little value is deducted from

luciferin as the decay with time.

The luciferin update rule can be written as:

        txftltl

iii
  11

 (4)

Where

q is the luciferin decay constant
 10  

,


 is the luciferin enhancement constant and

  txf
i represents the value of the objective function at

Enhancing Software Reliability Prediction based on Hybrid Fuzzy k-Nearest Neighbor with Glowworm Swarm

Optimization (FKNN-GSO) Algorithm

518

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

agent i’s location at iteration t. Phase 2: In phase 2, the

glowworms, using the probabilistic mechanism, move

towards the brighter glowworms.

The probability of a glowworm i moving towards a neighbor j

is given by:

 




)()()(

)()(
)(

tNk ik

ij

ij

i
tltl

tltl
tp

 (5)

Where
)(tN

i behaves agent i’s neighbor muster during

iteration t.
)(tN

i is shown as follows:

where
 tx

j is agent j location calculated at iteration t, the

Euclidian distance between glowworms i and j is represented

by
    |||| txtx

ij


 at iteration t,
 tl

j is a measure of the

luciferin held by glowworm j at iteration t,
 tr i

d is the

changeable local-decision range associated with glowworm i

at iteration t.

 
   

   


















txtx

txtx
stxtx

ij

ij

ij
||

)1(

 (6)

Phase 3: On the basis of the local information, glowworms

takes decision of their movements. The Radical sensor range

determines the number of peaks and acts as s strong function

to calculate the local decision range.

In extreme cases, we may need to find multiple peaks where

the sensor range is made a varying parameter, and each agent

i is associated with a local-decision domain whose radial

range is dynamic in nature. The local-decision domain update

rule can be represented as follows:


      tNtrrtr

it

d

is

i

d
 )(,0max,min1



Where
 tr i

d is the decision radius of agent i at iteration t

and satisfies s

i

d
rr 0

,

s
r

 is the sensor radial range,

b is change rate of neighbor-domain and

t
n

 is threshold for numbers of glowworms within decision

range.

D. Forecasting k-NN Formulation

If that the total number of observed failures are n and the

execution time is
nit

i
,......,2,1, 

, then the general

software reliability prediction model can be represented as

follows:

 ,,.......,,
11 


lmlmll

tttt
 (8)

Where 11
,.......,,

 lmlml
ttt

 is a vector of lagged variables,

and the dimensions of the input vector are represented by m or

the number of past observations related to the future value.

The KNN regression approach tries to find out the proper

representation of software failure time data. The

approximating function f plays the vital role in solving the

problems of prediction. It provides the auto-correlation

between the data and produces estimates. Therefore, to

predict reliability of the software the KNN is trained first to

understand the relationship between historical reliability

metrics and then the failures are predicted.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For evaluating the performance of the proposed parameter

estimation approach for SRGMs, MATLAB 2013 simulation

tool is used. In this paper, six classic Software Reliability

Models were chosen to calculate prediction accuracy. Out of

which four models were compared with other models. The

Failure Data have been taken from NASA public software

defect datasets set from the promise software engineering

repository. The NASA public repository datasets such as

CM1, JM1, KC1, KC 2 as data 1,2,3 and 4 respectively is

utilized with up to 100 test cases comprising 500 data. All the

evaluations done for proposed fuzzy k-nearest neighbor with

GSO Algorithm is given based on this dataset.

A. Performance Evaluation

For performance evaluation of our proposed work, the

models depicted in figure no 5 are used and the processing is

made using GSO optimization algorithm.

Fig 5. SRGM Models

In this M1, M2, M4, M5, M6 has two parameters and M3 has

three parameters respectively. With our approach, three

models are accomplished to perform comparison with the

existing approaches.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7, Issue-6, March 2019

519

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

TABLE 1: PARAMETER ESTIMATION ACCURACY OF SRGM

MODELS

NASA

data

G-O Delay

S

shape

Wei-bull M-O JM

O

Dun-ane

CM1 75.7

2

73.43 34. 21 39.6

6

50.32 73.20

JM1 61.3

3

55.67 23.43 28.0

3

37.87 56.55

KC1 72.4

5

59.70 37.90 37.3

3

53.65 50.43

KC2 73.5

4

56.13 39.56 37.9

8

42.10 59.32

As per the result of experiment evaluation, the six SRMs

parameter estimation accuracy were determined. All the

Models are satisfied with characteristics of SRGM, In

general, our experiment gives the better results for all the four

models, using novel FKNN-GSO approach.

Thus the above comparisons proved the efficiency of the

proposed algorithm with existing results.

B. Comparison Criteria

There are several approaches to evaluate the fitting

between calculated values of SRGMs and a real data set. In

this paper we have used MAE (Mean-Absolute Error), MSE

(Mean-Squared Error):

The mean squared error (MSE) is the average value of the

squares of the difference between the estimated value and the

observed number of software errors:

 


n

i
ii

tmm
n

MSE
1

2))((
1

 

The mean absolute error (MAE) is the average value of the

absolute errors:

 


n

i
ii

tmm
n

MAE
1

))((
1

  

Where i
m

is the observed real failures, and
)(

i
tm

 is the

estimated failures using a SRGM.

The estimation of MSE for the proposed fuzzy k-nearest

neighbor with Glowworm swarm optimization (GSO) Algorithm is

done by utilization of NASA public repository datasets with up to

100 test cases comprising of 700 data and is compared with existing

FNN as in figure 6. This comparison with ANN and FNN proved

the efficiency of proposed fuzzy k-nearest neighbor with GSO

algorithm. Compare to the ANN approach, MSE values of

proposed approach are smaller than the results of ANN for all

four dataset

Fig. 6. MSE comparison of NASA datasets

Then simultaneously Mean Absolute Error (MAE) parameter

estimation comparison is done for proposed fuzzy k-nearest

neighbor with GSO algorithm with existing ANN is illustrated

in figure 7.

Compare to the ANN approach, all of the minimum MAE

values proposed approach are smaller than the results of ANN

for three dataset except dataset3 where the higher values are

noted.

Fig. 7. MAE comparison of NASA datasets

These comparisons proved the efficiency of the proposed

algorithm with existing results.

Enhancing Software Reliability Prediction based on Hybrid Fuzzy k-Nearest Neighbor with Glowworm Swarm

Optimization (FKNN-GSO) Algorithm

520

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

Fig. 8. Mean Square Error (MSE) comparison for

proposed dataset with ANN and proposed

FKNN-GSO approach

Then simultaneously Mean Absolute Error (MSE)

parameter estimation comparison is done for proposed fuzzy

k-nearest neighbor with GSO algorithm with existing FNN

and is estimated for up to 100 test cases with 500 data as

illustrated in figure 9.

Also MSE comparison for existing ANN is given for

proposed fuzzy k-nearest neighbor with GSO algorithm and is

estimated for up to 100 test cases with 700 data and is

illustrated in figure 8. These comparisons proved the

efficiency of the proposed algorithm with existing results.

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7, Issue-6, March 2019

521

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

Fig. 9. Mean Absolute Error(MAE) comparison for

proposed dataset with ANN and proposed

FKNN-GSO approach

V. MODEL COMPARISON

TABLE II. COMPARATIVE ANALYSIS OF AVERAGE

RELATIVE PREDICTION ERROR FOR DATA SETS 1,2,3,4

Datasets SVM FFNN RNN RVM Proposed

Dataset1 2.44 2.58 2.05 2.50 1.11

Dataset2 1.52 3.32 2.97 5.23 2.04

Dataset3 1.24 2.38 3.64 6.26 1.71

Dataset4 1.20 1.51 2.28 4.76 0.87

Average 1.60 2.45 2.74 4.69 1.43

The results derived from modelling the co-relation between the

software failure time sequences on the dataset 1,2,3,4 using our

proposed FKNN-GSO approach is depicted in the table 2. To

maintain the same pattern for the comparative analysis the datasets

used to check the correlation is same as cited in [22], [23] and [24].

Park et al. implemented FF-NN and incorporated failure

arrangement numbers as info and aggregate time to failure as

wanted. The proposed FKNN-GSO approach has given average

prediction error lowest as 1.43 as compared to the average

prediction error got by as 1.60 utilizing SVM (Support Vector

Machine), 2.45 when utilizing feed-forward neural system, 2.74

based on recurrent neural system, and 4.69 when utilizing

feed-forward neural network. Thus the proposed FKNN-GSO

approach gives much less mean prediction error as compared to

other approaches in all the four datasets.

Fig. 10. Comparison with Existing Model

Figure 10 shows the parameter estimation accuracy of six

software reliability growth models under NASA public

software defect datasets. The performance evaluation given

based upon the existing four SRGM models such as SVM,

FFNN, RNN and RVM (Relevance Vector Machine) proved

the efficiency of our proposed FKNN method as listed in table

2. The performance evaluation for all the four SRGM models

are done with the same NASA datasets. Thus with aid of the

comparison with currently available methods the efficiency of

proposed method is analysed and is stated good for better

detecting.

VI. CONCLUSIONS

The quality of software systems is improved with the aid of

software defect prediction mostly done by software defect

classification and software defect ranking. In this work, a

GSO optimized FKNN-based model for software reliability

prediction model is introduced. Here the reliability of

software is predicted with a FKNN-based model by handling

the system failure rate. The predictive accuracy is optimized

with the Glowworm-Swarm optimization algorithm aimed to

search finest combination of weights to obtain maximum

regression accuracy and incorporation of adaptive fuzzy

k-nearest neighbor (FKNN) to allocate the degree of

membership to various software metrics using fuzzy logic

concepts. Models using Euclidean distance metrics ensures

the most optimal and reliable prediction results.

Enhancing Software Reliability Prediction based on Hybrid Fuzzy k-Nearest Neighbor with Glowworm Swarm

Optimization (FKNN-GSO) Algorithm

522

Published By:

Blue Eyes Intelligence Engineering

& Sciences Publication

Retrieval Number: F2287037619/19©BEIESP

Journal Website: www.ijrte.org

to

 The study provides an attractive model for software

reliability prediction and hence this technique ensures

accurate predictions and reliability of too many real time

applications such as health monitoring systems, safety critical

systems etc., in Intelligent Environment systems. Although in

future further investigation may be aimed at paying attention

towards evaluating efficiency of the proposed model on larger

datasets. In future, Evolutionary algorithms such as

differential evolution, GAs, simulated annealing, chaotic

GAs, and PSO can be connected to acquire more proper

parameters for kernel functions, and thus accomplish more

precise predictive capability in context of software reliability.

REFERENCES

1. Ahmet Okutan and Olcav Yildiz. “Programming defect prediction

utilizing Bayesian systems”. Observational software engineering,

Springer, volume 19, no 1, pp 154-81, 2014.

2. Chao Jung Hsu, Chin-Yu Huang and Jun-Ru Chang. “Upgrading

Software Reliability Modeling and Prediction through the introduction

time-variable fault reduction factor”. Connected mathematical

modeling, Elsevier, volume 35, no 1, pp 506-21, 2011

3. Chin-Yu Huang and Michael R. Lyu. “Estimation and Analysis of some

generalized change-point software reliability models”. IEEE

Transactions on Reliability, volume 60, no 2, pp 498-514, 2011

4. Cong Jin, Shu-Wei Jin. “Programming reliability prediction show in

view of help vector relapse with enhanced estimation of dispersion

calculations”,Applied soft computing, Elsevier, volume 15, pp 113-20,

2014.

5. Dr. M Sangeetha, Dr C Arumugam, Dr K M Senthil Kumar, S Hari

Shankar, “An effective approach to help multi target improvement in

software reliability assignment for enhancing quality”, Procedia

computer science, Elsevier, volume 47, pp 118-27, 2015

6. Hai Hu, Chang-Hai Jiang, Kai-Yuan Cai, W Eric Wong and Aditya O

Mathur, “Improving programming unwavering quality appraisals

utilizing changed versatile testing”. Information and software

technology, Elsevier, volume 55, no 2, pp 288-300, 2013

7. Hiroyuki Okamura, Tadashi Dohi and Shunji Osaki, “Programming

unwavering quality development models with typical disappointment

time conveyances”. Reliability engineering and system safety, Elsevier,

volume 116, pp 135-41, 2013

8. Hoang Pham, “A summed up blame discovery programming

dependability show subject to arbitrary working conditions”. Vietnam

journal of computer science, Springer, pp 1-6, 2016

9. Karunanithi N, Whitley D and Malaiya Y K. “Expectation of

programming unwavering quality utilizing connectionist models”. IEEE

Transactions on programming engineering, volume 18(7), pp 563-574,

1992

10. Kirti Tyagi and Arun Sharma, A govern based approach for assessing

the unwavering quality of segment based frameworks”, Advances in

engineering software, Elsevier, volume 54, pp 24-29, 2012.

11. Mengmeng Zhu and Hoang Phan, “ A software reliability demonstrate

with time subordinate blame discovery and blame evacuation”, Journal

of computer science, Springer, volume 3, no 2, pp 71-79, 2016.

12. P K Kapur, H Pham, Sameer Anand and Kalpana Yadav, “A Unified

approach for developing software reliability growth models in the

presence of imperfect debugging and error generation”, IEEE Trans on

Relaibility, volume 60, no 1 , pp 331-40,2011.

13. Park J Y, Lee S U and Park J H. “Neural system demonstrating for

programming unwavering quality expectation from disappointment time

information”. Journal of electrical engineering and information

sciences, volume4(4) : 533-538, 1999

14. Pratik Roy, G.S Mahapatra and K N Dey, “Neuro-hereditary approach

on calculated model based programming unwavering quality

expectation”, Expert systems with applications, Elsevier, volume 42, no

10, pp 4709-18, 2015

15. Pratik Roy, G S Mahapatra, Pooja Rani, S K Pandey and K N Dey,

“Powerful feedforward and intermittent neural system based dynamic Q

weighted blend models for programming unwavering quality

expectation”, Applied soft computing, Elsevier, volume 22, pp 629-37,

2014

16. R Peng, Y F Li, W J Zhang and Q P Hu, “ Testing exertion subordinate

programming unwavering quality model for blemished troubleshooting

process thinking about both discovery and rectification”, Reliability

engineering and system safety, Elsevier, volume 126, pp 37-43, 2014

17. Ramakanta Mohanty, V Ravi and M R Patra, “Crossover keen

framework for foreseeing programming unwavering quality”, Applied

soft computing, Elsevier, volume 13, no 1 , pp 189-200, 2013.

18. S Chatterjee and J B Singh, “ A NHPP based programming unwavering

quality model and ideal discharge arrangement with logistic-

exponential test scope under blemished investigating”, International

journal of system assurance engineering and management, Springer,

volume 5, no 3, pp 399-406, 2014

19. Subhashis Chatterjee, Jeetendra B Singhand Arunava Roy, “ A structure

based programming unwavering quality designation utilizing fluffy

logical chain of command process”, Int Journal of systems science,

volume 46, no 3 , pp 513-25, 2015.

20. Tian L and Noore A, “Dynamic programming unwavering quality

expectation : An approach in view of help vector machines”. Global

Journal of Reliability , Quality and safety engineering, 12(4), pp

309-321, 2005.

21. Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve

Counsell, "A Systematic Literature Review on Fault Prediction

Performance in Software Engineering", IEEE Transactions on Software

Engineering, volume. 38, no. 6, pp. 1276-304, 2012.

22. 22.Vahid Garousi, Ahmet Coskuncay , Aysu Betin-Can and Onur

Demirors, "A Survey of Software Engineering ctices in Turkey", Journal

of Systems and Software, Elsevier, volume 108, pp. 148-77, 2015.

23. WeiZhao, Tao, Ding Zhuo Shu and Enrico Zio, "A dynamic molecule

channel bolster vector relapse strategy for unwavering quality forecast",

Reliability Engineering and System Safety, Elsevier, volume 119, pp.

109-16, 2013.

24. Yubo Yuan, Houying Zhu, Bo Liu and Feilong Cao, “Software

dependability displaying with expelled mistakes and exacerbated

diminished rate, Mathematical and Computer Modeling”, Elsevier, vol.

55, no. 3, pp. 697-709, 2012.

25. .K.N. Krishnanand and D. Ghose, “Detection of Multiple Source

Locations Using a Glowworm Metaphor with Applications to Collective

Robotics”, Proceedings of IEEE Swarm Intelligence Symposium,

Pasadena, California, June 2005, 84– 91.

AUTHORS PROFILE

Shailee Lohmor is pursuing her PhD in the area of

software reliability and artificial neural network with

emphasis on predicting software reliability from the

Bharathiar University, Coimbatore. She is currently

working as an Assistant Professor in the Department of

Business Analytics, New Delhi Institute of

Management. Her areas of interest include software reliability, business

analytics, predictive analysis, and optimization techniques.

B.B. Sagar is currently working as an Assistant Professor

in the Department of CSE, Birla Institute of Technology,

Mesra Ranchi and posted at the BIT Noida Campus. He

received his MCA from UPTU and PhD (Computer

Science) from SHIATS Allahabad. His research interests

are in software reliability, network reliability, parallel

computing and distributed system. He is reviewer of various reputed SCI and

Scopus international journals and conferences like Elsevier, Inderscience,

IEEE and Springer. He has published around 30 research papers in journal

and conferences of international repute. Recently, he chaired many IEEE

international conference. He has been joined as a professional member of

IEEE Computer Society. He is a Fellow of IETE and life member of Vijnana

Bharti. He invited in various international summits and conferences as an

invited special guest organised by Govt. of India and others.

