
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2019

196

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

Abstract: Agile approaches in DevOps context evolved SDLC to

focus much on iteratively, communication and interactivity

between different project roles. In this service-oriented world,

much attention has to be given to customer specifications by

providing continuous applications delivery with reduced time-to-

market. Testing and the Quality Assurance (QA) activities take a

central role in ensuring the accomplishment of users’ acceptance

criteria and the quality of the delivered software. Instead of

contractual approach the agile approach is used to emphasis on

taming the Requirements Engineering, Testing and Quality

Assurance activities. This increased importance of testing

methodology manifests the software developing companies to

advance further on testing approaches, preventing defects during

the development process. This paper presents a testing

methodology to apply Acceptance Test Driven Development

(ATDD) techniques while developing DEVOps projects, termed

Acceptance Test Simple Testing (ACT-ST) methodology. ACT-ST

approach is very evident, supported by the open source framework

that generates test cases using the syntactic structure of Gherkin

language from ATDD scenario specifications extracted from the

user stories quoted with acceptance criteria. ACT-ST approach

promotes continuous Metric-based Quality Check, structured

User Stories with acceptance criteria for test case generation,

agile test reporting, Knowledge Repository and Functional

Knowledge Documentation for governance of Quality

Management System (QMS).

Keywords: Software testing, ATDD, Quality Management

System, DevOps.

I. INTRODUCTION

An underlying assumption in plan-driven methods is that

the requirements are relatively static. On the other hand,

iterative method like agile approaches relies on change and

diagnose that the only constant is change. Agile approaches

help teams to respond to unpredictability through

incremental, iterative work cadences and empirical feedback.

Agilest put forward alternatives to waterfall, or traditional

sequential development. Agile is termed as umbrella term

that includes methodologies like Scrum, XP, Crystal, FDD,

and DSDM. Agile provides better way to value: Individuals

and interactions over processes and tools, working software

over comprehensive documentation, Customer collaboration

over contract negotiation, responding to change over

following a plan.

A recent research survey result shown in Figure. 1,

Manuscript published on 30 December 2019.
*Correspondence Author(s)

N. Asha, School of Information Technology and Engineering, Vellore

Institute of Technology, Vellore (Tamil Nadu), India
Prasanna Mani, School of Information Technology and Engineering,

Vellore Institute of Technology, Vellore (Tamil Nadu), India.

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the CC-

BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

conducted by Hoa Loranger and Page Laubheimer of NN/g

Nielsen Norman Group in U.S., U.K., Australia, Singapore,

had a combination of surveys with in-depth interviews and

case studies. Overall, 356 respondents (UX practitioners)

participated in this survey with around 24 professionals were

part of in-depth interviews and case studies. The study

reports that 69% of the projects they support are agile, this is

a significant increase compared to the report that was

obtained in the year 2008 which was 47%.

Figure 1: Agile adoption is growing

“More than the act of testing, the act of designing tests is

one of the best bug preventers known” – Boris Beizer.

According to agile manifesto principles, “Our highest

priority is to satisfy the customer through early and

continuous delivery of valuable software.” Precisely agile

approaches endorse reducing the time-to-market to

incorporate continuous delivery, so the central role called

agile requirement engineering, testing practices has to be

focused. One of the vital actions to be done in testing

practice is; to construct Metric-based Quality Gates regularly

to measure and validate the pieces of software continuously.

In simple words, speed needs a balance with quality

checks. Agile implies divide-and-conquer strategy in its

sprint concept to rethink how to address testing in

comparison with traditional testing practice. Testing

processes should adapt to iterative context and also the agile

validation checks.

To accumulate knowledge in each iteration, we need to

have a study view of the big picture of the software being

delivered.

Based on this gained knowledge Metric-based Quality

Gate fixed for Quality Checks. Testing role should be

considered as an active part of the software engineering

process to address all these agile challenges, to bring neat

communication strategies.

This ACT-ST approach follows the agile principle

“Business people and developers must work together daily

throughout the project”, testing and QA roles can be

included too.

Knowledge-based Acceptance Test driven agile

Approach for Quality Software Development

N. Asha, Prasanna Mani

http://www.ijrte.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Knowledge-based Acceptance Test driven agile Approach for Quality Software Development

197

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

This approach accustom new method of communication

than seeing that “The most efficient and effective method of

conveying information to and within a development team is

face-to-face conversation”.

In many project contexts with distributed teams, variable

people availability, integrate a neat complementary written

communication artifact to reduce ambiguity and

requirements misunderstandings to avoid conflicts with

economic impact.

User Stories are commonly accepted agile requirements

artifacts. User Stories supplemented with acceptance criteria

(States the Conditions of Satisfaction) denotes the

descriptions of a feature told under users’ perspectives who

desires the new capability. User Stories acts as a base for

explicit communication among stakeholders, designers,

developers and testers to generate accurate test case design

in which agile iteration.

The ACT-ST approach introduces three active roles:

Collaborative Manager, Test Reporter and Quality-Checker

to narrow down the testing process. The ACT-ST approach

is a Knowledge-based framework formalized with the

support of knowledge gained from the approach introduced

by Albert Tort.

ACT-ST promotes continuous Metric-based Quality

Check, structured User Stories with acceptance criteria for

test case generation, agile test reporting, Knowledge

Repository and Functional Knowledge Documentation for

governance of Quality Management System (QMS). The

remainder of this paper is systematized as follows. Section 2

presents the related work made for test case generation.

Section 3 describes the proposed framework and describes

the main components of ACT-ST approach. Section 4

discusses work part of Knowledge driven component.

Section 5 represents the algorithmic steps for test case

generation.

Section 6 discusses about the functional model and

functional document generation. Section 7 represents the

result of proposed approach.

Section 8 compares the result of ACT-ST approach with

three different agile project specifications: 1) Online EB

payment portal, 2) Online shopping system, 3) Net banking

system. Section 9 concludes the paper by summarizing the

benefits of proposed approach and presents direction for

future works.

II. RELATED WORK

The contractual approach was used so long; hence it has to

be refined to address the current agile testing. At the limit

Martin and Melnik says that tests and requirements are

equivalent. The agile movement has proposed to focus on

User requirements in order to achieve quality in the testing

process, followed by that Agile Acceptance Testing is

proposed to bridge the gap between the developers and

stakeholders. The user scenarios were expressed in different

form: ATDD with Fit test framework, Cucumber. This how

the requirements are expressed as acceptance tests and these

tests are automated. The research works mentioned in

Table. 1 describes various approaches for test case

generation in different context. The proposed framework is a

form of agile approach developed for DevOps environment

and deals with both internal and external testing.

External testing produces Acceptance Tests for being

validated by project stakeholders.

Table 1: Different approaches for Test Case Generation

in various contexts
Author(s) /

Year

Proposed

Framework
Capabilities Outcome

Hong,

Weiyin, et
al., (2011)

Research

Model:

Tripartite
model of

attitude

The model
incorporates

an individual

characteristic
variable that

is particularly

relevant to
individual’s

reaction to

changes.

Developed

research model

by identifying
key constructs

under three

dimensions
(cognitive,

affective and

Behavioural)
of attitude to

derive

hypothesis for
adopting agile

IS

Ashar Fuadi
et al.,

(2015)

Tcframe

Single self-
validating

generator

program for
generating

test cases,

both test case
generation

and validation

is done
(runner

program)

Enable to

create test case

more
collaboratively

Carrera,

Álvaro et
al., (2014)

BEAST

Testing
Methodology

BEAST is an

open source

framework
that generates

test cases

skeletons
from BDD

scenarios

specifications
, transparent

traceability
from user

requirements

to test cases.

Facilitates the

communication
between

stakeholders,

designers,
developers and

testers.

Reduced test
implementatio

n time,
transparency in

translation.

This tool is
Validated for

fault diagnosis.

Janus,
André, et

al., (2012)

3C Approach

Adds

continuous

measurement
and

continuous

improvement
as subsequent

activities to

CI in an agile
practice

Enhanced

automated
compile, build

and running of

test.
Established

Metric-based

Quality-Gates
for an agile

quality

assurance.

Albert Tort
et al.,

(2011)

TDCM

Approach:

conceptual
modelling

Increases the
semantic

quality by

evolving the
set of test

cases refined

to give pass
verdict.

TDCM can

be adapted to
other

languages.

Complete and

correct schema

at each
iteration: After

each iteration,

the result is a
correct and

complete

conceptual
schema

according to

the processed
test cases.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2019

198

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

III. THE ACT-ST APPROACH

The ACT-ST approach focuses on bringing effective and

efficient tactic for simplifying the test case generation.

Additionally ACT-ST is a Quality-focused approach for

enhancing agile activities in the development environment.

This approach concentrates on four main objectives: (1)

Input enriched semiformal User Stories with their

acceptance criteria, (2) smoothen communication among

stakeholders, developers, testers even they are located apart,

(3) effective Quality Checks (Validation checks) across the

agile process, and (4) enhancing Quality Management

System (QMS) based on knowledge perspective in agile

iterations by sustaining the big picture of the project.

Overview of main components of the ACT-ST approach is

exemplified in Figure. 2.

Figure 2: Overview of ACT-ST approach

A. Enhancing User Stories with Structured format

The agile approach entirely works on the customers’

perspectives, in each agile iteration the practitioners’ strives

to satisfy the users. Hence our ACT-ST approach at its first

stage completely concentrates on the Users Stories to

understand the whole expectation of them on the agreed

project. For better understanding and to avoid ambiguities

User Stories is written in well-structured format using K+

editor / Gherkin-Cumcumber, which clearly formats the

users’ needs, their Acceptance Criteria and the configured

level of Coverage Criteria.

B. Agility in Test Report

As a resultant of test case execution we get the test verdict

that can be pass, fail or error. The test cases can be executed

manually or it can be automated with the help of automated

tools depending upon the project size, characteristics and

project objectives. In agile practice the build of software is

of iterative in manner; the testing process has to be repeated

for every iteration in order to make the validation,

integration and Quality Checks. This approach includes a

smart trivial procedure to report about the focused test cases

that have to be executed in case the agile context does not

use a full specific Test Management System (TMS). This

trivial procedure simplifies the test reporting effort in agile

teams. The ACT-ST approach also includes the

compatibility functions to report the test verdict to the Test

Management Systems (TMS), Test Link, Microsoft Excel

and also can be integrated with other tools for fine checks.

C. Functional Knowledge generation

The functional documentation is codified from the set of

test cases generated from the enriched User Stories written

in structured format. This Functional Document covers the

complete specifications of the big picture of the project

termed as Functional Knowledge. The Functional

Document/Knowledge represents the detailed concepts,

relationships and functional operations of each user defined

functions. In analogous to this the Functional Model is

depicted neatly that visualizes the operational mechanism

and the relationships among the functions and their

collaborations. In each agile iteration the updated new

version of Functional Documentation and the Functional

Model is generated. This Functional Knowledge acts as: 1) a

base for extracting enriched system knowledge, and 2) a

base for computing ACT-Metrics.

D. ACT-Metrics as Quality Checks.

ACT- Metrics is the dynamic component in the

framework which comprise of a balanced dashboard for the

active development of the project.

In each iteration the control panel indicates the metrics

like the number of test cases, number of passing or failing

test cases, etc.

Additionally, this component actively compares the

knowledge data (Functional Knowledge) related to the

number of concepts, relationships and functionalities that are

covered by tests in every agile iteration for better Quality

Checks.

IV. KNOWLEDGE DRIVEN COMPONENT

In this section we exemplify the Knowledge driven

component that takes the enriched User Stories with priority

indicators defined in flow sketches as input to generate: 1)

Test designs (refer Table. 2) which include test case steps

and assertions, 2) Filtered Test Cases for execution with

available resources and stated Coverage Objectives.

The Test cases can be presented in HTML/Open

Document file format and also be exported to other Test

Management Systems, Microsoft Excel or Test Link.

Table 2: Generation of Test Case steps and assertions

http://www.ijrte.org/

Knowledge-based Acceptance Test driven agile Approach for Quality Software Development

199

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

V. TEST CASE GENERATION

The ACT-ST approach incorporates the following stages

to generate the test cases: 1) Eliciting end-to-end paths to

derive all possible combinations, 2) Unit Test Case

generation for each User Story with its acceptance criteria,

3) End-to-end Test Case generation for all possible

combinations, 4) Combining Test Case with different Test

data.

A. Eliciting end-to-end paths to derive all possible

combinations

To compute the end-to-end paths for a general User Story

the activity diagram is extracted from the User Story; this

step of process can be omitted for atomic User Stories.

In this stage the two popular algorithms are used

subsequently: Tarjan algorithm and the Breath-First Search

algorithm.

The Tarjan algorithm: to identify strongly connected

components to make a neat flow diagram avoiding infinite

loops to ensure that one single traverse is made for each

cycle while deriving the Test Case paths.

The Breath-First Search algorithm: it guarantees full

coverage of all possible paths and the User scenario

associated in each path to compute end-to-end Test Cases.
Algorithm 1: To identify strongly

connected components

Algorithm 2: To identify all

possible paths

function StrongConnect(vertex u)

num ← num + 1

// increment num

order(u) ← num // set

order(u) to smallest unused number

link(u) ← order(u)

// least order(v) accessible is u itself

push u on S

for all neighbors v of u do

 if order(v) is undefined then

// v has not been visited

 StrongConnect(v)

 link(u) ← min(link(u), link(v))

 else if v is on stack S then //

v is in current component

 link(u) ← min(link(u), order(v))

if link(u) = order(u) then // u is root

of component, create SCC

create new strongly connected

component

 repeat

 v ← top of S

 add v to strongly connected

component pop top from S

 until u = v

 function Tarjan(G(V, E))

num ← 0

initialize new empty stack S

for all vertices v ∈ V do

 if order(v) is undefined then

// v has not been visited

 StrongConnect(v)

BFS(G, s)

for each vertex u ∈ V [G]

−{ s } do

state[u] = “undiscovered”

p[u] = nil, i.e. no parent is in

the BFS tree

state[s] = “discovered”

p[s] = nil

Q = {s}

While Q = ∅ do

u = dequeue[Q]

process vertex u

as desired

for each v ∈

Adj[u] do

proce

ss edge (u, v) as

desired

if

state[v] =

“undiscovered”

then

state[

v] =

“discovered”

p[v] =

u

enque

ue[Q, v]

state[u] =

“processed”

B. Unit test case generation for each User Story with

its acceptance criteria

The Unit Test Case is designed for each atomic User

Story. Given clauses corresponds to Test Case preconditions,

while When and Then clauses are essential to generate steps

and Test Case assertions. Figure. 3 Shows the Unit Test Case

for “Valid Login”.

Figure 3: An example of Unit Test Case generated

C. End-to-end Test Case generation for all possible

combinations

The paths found in the first stage and the Unit Test Cases

designed in the second stage is fed as input for end-to-end

Test Case generation. This stage combines all paths and

covers all possible User scenarios to compute the end-to-end

Test Cases, (In this stage Test Cases are generated

commonly without including the example test data). The

fragment is shown in Figure. 4.

Figure 4: End-to-end Test Case generation.

D. Combining Test Case with different Test Data

The acceptance criteria that stipulate example data is

considered to draw input data set. The Test Cases extracted

in previous stage is tested with this input test data; this stage

combines the extracted test cases with induced test data for

test execution.

E. Focused Test Cases

Using the above mentioned combination of algorithmic

procedure the set of all possible Test Cases are generated.

For a smart testing process it’s not mandatory to execute all

set of Test Cases and there is no sufficient time and

resources to execute too, hence the Knowledge driven

component lets the whole set of test cases to be filtered

based on two attributes:

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2019

200

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

1. Test Case execution for specific User Stories: the

User specified User Stories are targeted for testing

and the Test Cases relevant to those User Stories

are alone considered for the next level of filtering.

2. Test Case priority: based on the priorities set for

each targeted User Story, the priority values (High,

Medium, Low) is set for its associated each Test

Case. The filtering of Test Cases is made based on

this priority value set. The resultant Focused Test

Cases alone is executed to save time and other

resources.

VI. ITERATION-BASED DOCUMENTATION

GENERATION

The User Story is formalized further using a restricted

syntax as shown in Figure. 5 to reduce the ambiguity, by

doing so will support in smooth generation of Functional

Model and Knowledge Documentation.

• Test-Driven Functional Model Generation: The

living model (evolves as generated test cases

changes) is obtained using the engine stated in this

model (specified using UML) postulates the

concepts, relationships and operations derived from

use cases, which in turn is derived from User

Stories. Figure. 8 shows the splinter of an output

model of the knowledge related to Net Banking

system. In agile iteration the model evolves as new

knowledge is added. This model is a knowledge

repository that represents the big picture of the

project termed as functional knowledge

components.

• Knowledge Document Generation: The model

obtained can be structured into knowledge

document that can be exported to several formats

like HTML, PDF, and textual Open Document file.

Figure 5: Formal User Stories specification

Figure 6: UML diagram fragment of Net Banking

VII. METRICS- BASED QUALITY CHECKS FOR

AGILE MANAGEMENT

The project management dashboard is used to monitor and

control the agile projects. It visualizes the outcome of each

agile iteration and computes the knowledge metrics that

takes into account the inputs like: User Stories with

Acceptance Criteria, set of Test Cases generated, verdicts of

each Test Cases, Functional Knowledge specified using

UML. This computed innovative metrics provides more

information for example: productivity of Test Cases,

productivity of each agile iteration. Such metrics are

compared amongst them to work for better outcome in the

next iteration of testing activities.

VIII. RESULT

The proposed approach is well suitable for enhancing the

agile activities in the context of DevOps environment. The

ACT-ST approach comprises of many features that together

offered many advantages to the agile environment: 1) it

reduces the Test Case design time, since it is generated from

enriched User Stories, 2) Functional Model is evolved easily

through User Stories defined in semiformal syntax, 3) Test

Case execution and Reporting is computed smartly to

manage the system Quality, 4) Knowledge Documentation is

generated from functional model in each agile iteration to

derive Knowledge metrics, 5) Quality management

dashboard is provided for balanced evolutions.

Figure 7: Test cases reporting interface

http://www.ijrte.org/

Knowledge-based Acceptance Test driven agile Approach for Quality Software Development

201

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

The interface of testing report is shown in Figure. 7. In

each agile iteration the model is evolved by adding newly

gained knowledge and the project management dashboard

presents the graphical information of basic knowledge

metrics which is shown in Figure. 8.

Figure 8: Basic Knowledge metrics

A. Comparative Results

The experiments were performed to determine that the

ACT-ST approach has enhanced the agile activities to

achieve reduced time-to-market and to fetch Focused Test

Cases effectively. The proposed framework provides the

possible Test Cases with 100% Coverage criteria. This paper

compares the result of ACT-ST approach with three different

agile project specifications: 1) Online EB payment portal, 2)

Online shopping system, 3) Net banking system. The result

shows that the semiformal User Stories based ACT-ST

approach gives better performance than the previous

approaches without User Stories and acceptance criteria. The

proposed approach smartly filters the Test Cases based on

User Specifications to reduce time-to-market time period.

Figure. 9 mentioned below illustrate the graphical

representation of the result obtained.

Figure 9: Performance of ACT-ST shown with three

different agile projects

IX. CONCLUSION

The ACT-ST approach presented in this paper yields an

effective solution for enhancing the agile iteration activities

in the context of DevOps environment. The test case

generation method used in this approach generates the test

case based on users’ perspective and provides complete

coverage of user stories with acceptance criteria; the filtering

method provides (focused test cases) a smart way to focus on

the needed test cases and screens out the able test cases for

DevOps projects. The generated test cases are exported to

HTML/word processing file format or integrated to test

management systems. This user stories based approach helps

in improving the performance of testing process by applying

the knowledge metrics obtained from functional knowledge

components (new knowledge is added in each agile iteration

to enlighten the testing activities), increasing the frequency

of continuous delivery of application, reducing the time-to-

market. It incorporates Tarjan algorithm and Breadth-First

Search algorithm which renders 100% path coverage. This

approach is implemented in three different agile projects

which has given good optimized outcome and enhanced the

testing activities. Overall this approach helps to face the

challenges in maintaining good quality in the testing

activities in the context of agile practices by reducing the test

design effort and making use of knowledge components for

innovative management.

REFERENCES

1. “Accounting for UX work with user stories in Agile Projects”

authors Hoa Loranger and Page Laubheimer, NN/g Nielsen

Norman Group, 12 March 2017,

https://www.nngroup.com/articles/ux-user-stories/ (article).

2. “Agile software development methodologies and how to apply

them”, author Monjurul Habib, 30th December 2013 (article).

3. “An approach for iterative and requirements-based quality

assurance in DevOps” author Albert Tort, The magazine for

RE professionals from IREB, Issue 2016 -03

4. A.S.Syed Fiaz, N.Asha, D.Sumathi and A.S.Syed Navaz.

2016. Data Visualization: Enhancing Big Data More

Adaptable and Valuable. International Journal of Applied

Engineering Research. 11(4): 2801-2804.

5. A.S.Syed Navaz, P.Jayalakshmi, N.Asha. 2015. Optimization

of Real-Time Video Over 3G Wireless Networks” September.

International Journal of Applied Engineering Research.

10(18): 39724-39730.

6. A.S.Syed Navaz & Dr.G.M.Kadhar Nawaz. 2016. Flow Based

Layer Selection Algorithm for Data Collection in Tree

Structure Wireless SensorNetworks. International Journal of

Applied Engineering Research. 11(5): 3359-3363.

7. A.S.Syed Navaz and Dr. G.M. Kadhar Nawaz. 2016. Layer

Orient Time Domain Density Estimation Technique Based

Channel Assignment in Tree Structure Wireless Sensor

Networks for Fast Data Collection. International Journal of

Engineering and Technology. 8(3): 1506-1512.

8. A.S.Syed Navaz, N.Asha & D.Sumathi “Energy Efficient

Consumption for Quality Based Sleep Scheduling in Wireless

Sensor Networks” March - 2017, ARPN Journal of

Engineering and Applied Sciences, Vol No - 12, Issue No - 5,

pp.–1494-1498.

9. Boehm, Barry. "A survey of agile development

methodologies." Laurie Williams (2007).

10. Carrera, Álvaro, Carlos A. Iglesias, and Mercedes Garijo.

"Beast methodology: An agile testing methodology for multi-

agent systems based on behaviour driven development."

Information Systems Frontiers 16.2 (2014): 169-182.

11. Cohn, M: User Stories Applied: For Agile Software

Development. Addison Wesley (2004)

12. Fitzgerald, Brian, et al. "Scaling agile methods to regulated

environments: An industry case study." Software Engineering

(ICSE), 2013 35th International Conference on. IEEE, 2013.

13. FUADI, Ashar. "Introducing tcframe: A Simple and Robust

Test Cases Generation Framework." Olympiads in Informatics

(2015): 57.

14. Hammond, Susan, and David Umphress. "Test driven

development: the state of the practice." Proceedings of the

50th Annual Southeast Regional Conference. ACM, 2012.

15. Hong, Weiyin, et al. "User acceptance of agile information

systems: a model and empirical test." Journal of Management

Information Systems 28.1 (2011): 235-272.

16. Hong, Weiyin, et al. "User acceptance of agile information

systems: a model and empirical test." Journal of Management

Information Systems 28.1 (2011):

235-272.

http://www.ijrte.org/
https://www.nngroup.com/articles/ux-user-stories/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2019

202

Published By:

Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: Es2059017519/2019©BEIESP

Journal Website: www.ijrte.org

17. Janus, André, et al. "The 3c approach for agile quality

assurance." Proceedings of the 3rd International Workshop on

Emerging Trends in Software Metrics. IEEE Press, 2012.

18. Martin, R., &Melnik, G. (2008). Tests and requirements,

requirements and tests: a m¨obius strip. IEEE Software, 25(1),

54–59.

19. Mugridge, R., & Cunningham, W. (2005). Fit for developing

software: framework for integrated tests. Upper Saddle River,

NJ:Prentice Hall.

20. N. Asha, et al. “Customer segregation in banking organisation

using knowledge management.” IJPT Vol. 8 Issue No.3 (Sep-

2016): 17645-17649

21. Nuutila, Esko, and Eljas Soisalon-Soininen. "On finding the

strongly connected components in a directed graph."

Information Processing Letters 49.1 (1994): 9-14.

22. Pohl, Klaus. Requirements engineering: fundamentals,

principles, and techniques. Springer Publishing Company,

Incorporated, 2010.

23. Tort, Albert, Antoni Olivé, and Maria-Ribera Sancho. "An

approach to test-driven development of conceptual schemas."

Data & Knowledge Engineering 70.12 (2011): 1088- 1111.

24. Tort, A.: The Recovery Approach. Available at: https://re-

magazine.ireb.org/issues/2015-1-ruling-complexity/the-

recover-approach/

25. TestLink Open Source Test Management. Available at:

https://testlink.org

26. Wynne, M.: The cucumber book: behaviour-driven

development for testers and developers. Pragmatic Bookshelf

(2012).

http://www.ijrte.org/
https://testlink.org/

