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Abstract:  Deep Learning is gaining lot of prominence due to 

its break through results in various fields like Computer Vision, 

Natural Language Processing, Time Series Analysis, Health 

Care etc. Earlier, the Deep Learning was implemented using the 

batch and stochastic gradient descent algorithms and some 

optimizers which lead to very less performance of the models. But 

today, lot of work is going on for the enhancement of the 

performance of Deep Learning using various optimization 

techniques. So, in this context, It is proposed to build a Deep 

Learning model using various Optimizers (Adagrad, RmsProp, 

Adam), Loss functions (mean squared error, binary cross 

entropy) and Dropout concept for the Convolutional neural 

networks and Recurrent neural networks and verify the 

performance such as Accuracy and Loss of the model. The 

proposed model has achieved maximum Accuracy when Adam 

optimizer and mean squared error loss function are applied on 

convolutional neural networks and the model is run with 

minimum Loss when the same Adam optimizer and mean 

squared error loss function are applied on Recurrent neural 

networks. While performing the Regularization of the model, the 

maximum Accuracy is achieved when the Dropout with a 

minimum fraction ‘p’ of nodes is applied on convolutional neural 

networks and the model has run with minimum Loss when the 

same dropout value is applied on Recurrent neural networks.  

Keywords : Deep Learning, Convolutional Neural Networks, 

CNN, Recurrent Neural Networks, RNN, Computer Vision, 

Natural language processing, Time Series Analysis.  

I. INTRODUCTION 

Deep Learning 

Deep Learning [1][2][3] is a machine learning technique 

which has been applied in various domains like computer 

vision, natural language processing, robotics, health care 

and artificial intelligence etc. In Deep Learning, the learning 

is achieved at various levels. The inputs are processed at the 

initial level, transform into an abstract form, at the next 

level, still processed into more precise form and likewise the 

learning is achieved more deeper.  In this paper, the model is 

built using the Deep Learning algorithms such as 

Convolutional neural networks(CNN), Recurrent neural 

networks(RNN). Firstly, Let’s understand the Convolutional 

neural networks. The Convolutional neural networks [4][5] 

are used mainly to identify or recognize the image which is 

termed as computer vision. Computer Vision is to make 
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computers understand images and videos. It is used for 

optical character recognition, face detection, smile detection, 

object recognition etc. The supervised Deep Learning 

algorithm, Convolutional Neural Networks is a big 

breakthrough in the field of Computer Vision. The process 

of convolution is done in the following manner. Consider an 

input image containing pixels and its binary representation 

of pixels is taken. Here the binary representation of an input 

image is taken as a matrix of order 7 x 7 (refer fig 1). To 

extract few characteristics of the image such as edge 

detection, emboss, blur etc., various filters or feature 

detectors would be used. So, a feature detector or a filter is 

taken as a matrix of order 3 x 3 (refer fig 2) with random 

elements and compared with the first 3 x 3 order of input 

vector (which means the zeroth, first, second rows and 

zeroth, first, second columns). So, the logical AND 

operation is applied on the first element (zeroth row and 

zeroth column) of feature detector or filter and with the 

corresponding first element (zeroth row and zeroth column) 

of the input vector and check for the output(refer table 1) 

and count the total number of combinations which are 

producing an output of bit ‘1’.  Here, the total number of 

combinations are ‘zero’ producing an output of 1. After the 

first iteration, the number of combinations ‘0’ is written as 

the first element in the 5 x 5 two dimensional feature map. 

Next, when the comparison is done with the filter and the 

next 3 x 3 elements of Input vector (zeroth, first, second 

rows and first, second, third columns) , the total number of 

combinations are ‘one’ producing an output of 1 and so on. 

After the second iteration the number of combinations ‘1’ is 

written as the second element in the 5 x 5 two dimensional 

feature map. Likewise, by mapping the total number of 

combinations which are producing output 1, it generates the 

complete two dimensional feature map. This is the process 

of convolution. A big size input vector would be compared 

with a small size filter or feature detector and produce a 

moderate size feature map. Similarly, the various filters or 

feature detectors are applied on the given input vector and 

produce several corresponding feature maps and the set of 

all these feature maps would be termed as convolution layer. 

Here, the Rectified linear unit (ReLU)  is used as the 

activation function. And then the Maximum Pooling process 

is applied on a feature map. Here, a matrix of order 2 x 2 is 

considered for this process. It means, from the feature map, 

by reading the first 2 x 2 matrix elements (zeroth, first rows 

and columns), the largest element is picked and map it as the 

first element in the new matrix called Pooled feature map. 

Next, for the second iteration, the next 2 x 2 matrix elements 

( zeroth, first rows and first, second columns) of feature map 

are considered and pick the largest element and map it as the 

next element of pooled feature map and in the similar way  
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the complete pooled feature map matrix is generated. 

Now, for all the feature maps of the convolution layer, the 

new set of pooled feature maps are generated and it is 

termed as pooled convolution layer. Then, every pooled 

feature map of pooling layer which is a two dimensional 

matrix is Flattened into a one dimensional matrix in a 

sequential way (refer Fig 3) and this matrix is given to the 

Input layer of Artificial neural network and then passed to 

the hidden layers and to the output layer and produce the 

final output. It means for the convolutional neural network 

model, the image is given as input which is passed through 

the convolution layer, pooling layer and the flattening is 

applied and passed to the Input layer of Artificial neural 

network, hidden layer and then to the output layer and 

finally the model identifies or recognizes the image(refer fig 

3). 

Table 1 – The convolution process 

Feature detector 

or filter 
Input vector Output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

Fig 1 – The image, pixels and its binary representation 

 

Fig 2 – The process of convolution of an image 

Now, let’s comprehend the Recurrent neural networks. 

The concept of Recurrent neural networks [6][7][8] is 

predominantly applied in the fields of natural language 

modelling, machine translation and speech recognition. The 

main technique behind the Recurrent neural networks is the 

sequence of input. The Recurrent neural network would be 

having series or sets of input layer, hidden layer, output 

layer(refer fig 4 & fig 5) and each layer containing required 

number of neurons. 

 

Fig 3 – The overall process of convolutional neural 

networks 

Initially, for the first set of input, hidden layer after 

applying the activation function, there would be an output 

and this output is given as the input to the second set of 

input layer, hidden layer and output layer and the 

consequent outputs are passed to the next set of layers till 

the final output is achieved. The networks are termed as 

Recurrent neural networks as this step is carried out at each 

and every step for a series of input, hidden and output 

layers. To predict a word in a sentence, the network should 

remember the word of previous iteration. As the network is 

remembering the word of previous iteration it acts as a 

memory storage unit and as there are long series of input, 

hidden and output layers, this concept was also referred as 

Long short term memory networks or LSTM networks [9]. 

The various forms of Recurrent neural networks are ‘one to 

many’, ‘many to one’ and ‘many to many’. The first form 

‘one to many’ indicates if the input is ‘one’ image, the 

Recurrent neural network model produces ‘many’ narrations 

of the image. It means if the image contains various objects, 

then the model initially uses convolutional neural network 

and identifies all the objects of the image and then by using 

recurrent neural networks it gives the narration of all the 

objects as many words and hence it is ‘one to many’. The 

second form ‘many to one’ indicates if there are ‘many’ 

words or sentences as the input, then the model uses purely 

recurrent neural networks and produces the final outcome as 

positive or negative feedback which is ‘one’ output and 

hence it is ‘many to one’. And the third form ‘many to 

many’ indicates if there are ‘many’ words or sentences as 

input, then the model again uses recurrent neural network 

and translate into ‘many’ words or sentences as output and it 

is referred as ‘many to many’.  Here the concept of 

optimization is dealt in chapter 2, the optimizers Adagrad, 

RmsProp, ADAM and their algorithms are narrated in 

chapter 3, the Loss functions in chapter 4, drop out concept 

in chapter 5 and the total results are organized in chapter 6. 
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Fig 4 – The Input layer, hidden layer & output layer of 

Recurrent neural networks 

 

Fig 5 – The series of Input layer, hidden layer and 

output layer of Recurrent neural networks 

II. OPTIMIZATIONIN  DEEP LEARNING 

The Gradient Descent [10][11][12] technique is one of the 

most popular algorithms to perform optimization for the 

neural networks. To comprehend, imagine a person standing 

on a top of a mountain and if he want to reach the bottom 

most point of the mountain with the condition that he is 

blind with no visibility. The Best way is to choose the 

surface which tends to descend as the first step. By 

following the similar strategy, he takes different steps to 

reach the bottom most point. Here, we need to find the best 

parameters for our learning algorithm and its corresponding 

cost. Here cost is nothing but the performance of the 

algorithm for different values of the parameters. The 

Gradient descent is having various variants such as Batch, 

Stochastic and mini Batch. The Batch Gradient descent uses 

the entire training data set and computes the gradient of the 

cost function with respect to the parameters. The Stochastic 

Gradient descent is the one which performs the parameter 

update for every training example. And the mini Batch takes 

the best of above two strategies by performing the parameter 

update for every mini batch of training examples. Initially 

the deep learning has used the basic gradient descent 

algorithms with which the models used to run with very less 

performance. In this paper, It is proposed to use few 

gradient descent optimization algorithms such as Adagrad, 

RmsProp and ADAM for both convolutional neural network 

and recurrent neural network models.  

III. OPTIMIZERS 

The first proposed optimizer is Adagrad. The Adagrad 

[13] is a Gradient descent optimization algorithm which 

adapts the learning rate. Here , the required parameters are 

Global learning rate α, mini batch size m, Initial weights θ t , 

Small constant, δ, perhaps 10−7 , for numerical stability  
1: Gradient accumulation variable is initialized r=0   

2: while (condition !=stopping criterion) do  

3: consider a mini batch of m examples from the training 

set  

4: Compute gradient estimate  ∇θ∑  𝐽 𝑚
 𝑖=1 (𝜃𝑡  ;  𝑥(𝑖), 𝑦(𝑖)) 

5: Accumulate squared gradient r = r + ( ∇θ J Ꙩ ∇θ J ) 

6: Compute update ∆ θ (t+1) = 
𝛼

𝛿+√𝑟
Ꙩ ∇θ J (division and 

square root computed elementwise)  

7: Apply update   θ (t+1) = θ t -∆ θ (t+1) 

8: end while 

Adagrad considers the low learning rates for the 

parameters occurring frequently and high learning rates for 

the parameters occurring infrequently. That’s why it is said 

that it is well suitable for sparse data. Here, the mini batch 

of training examples are taken, compute the gradient, and 

square the Error (gradient), and then the weights are 

updated. 

The second optimizer RmsProp [14] is an other optimizer 

algorithm which computes the learning rate with an 

exponential average of squared gradients. Here , the 

required parameters are Global learning rate α, Decay rate ρ, 

Mini batch size m, Initial weights θ t , Small constant, δ, 

usually 10−6 , for numerical stability  

1: Accumulation variable is initialized r=0  

2: while (condition !=stopping criterion) do  

3: consider a mini batch of m examples from the training 

set  

4: Compute gradient estimate ∇θ∑   𝐽𝑚
𝑖=1 (𝜃𝑡  ;  𝑥(𝑖), 𝑦(𝑖)) 

5: Accumulate squared gradient r= ρ r + (1- ρ) ( ∇Θ J Ꙩ 

∇Θ J ) 

6: Compute update ∆θ (t+1) = 
𝛼

𝛿+√𝑟
Ꙩ ∇θ J (division and 

square root computed elementwise)  

7: Apply update  θ(t+1) =θ t - ∆ θ (t+1) 

8: end while  

Here in RmsProp, the mini batch of training examples are 

taken, compute the gradient, and square the Error (gradient) 

with decay rate , and then the weights are updated. 

The third optimizer ADAM[15] is one of the most 

efficient optimizer algorithm that computes the learning rate 

for each parameter. Here , the required parameters are 

Global learning rate α, Decay rates for moment estimates ρ1 

and ρ2, Mini batch size m, Initial weights θ t, Small 

constant, δ, usually 10−8 , for numerical stability 

1: Initialize 1st and 2nd moment variables r=0 and s=0  

2: while (condition !=stopping criterion) do  

3: consider a mini batch of m examples from the training 

set  

4:Computegradient estimate∇θ∑   𝐽𝑚
𝑖=1 (𝜃𝑡  ;  𝑥(𝑖), 𝑦(𝑖)) 

5: Update biased first moment estimate                                 

     s = ρ1 s + ( 1 − ρ1 ) ∇θ J   

6: Update biased second moment estimate  

     r = ρ2 r + (1 − ρ2) ( ∇θ J Ꙩ ∇θ J )  

7: first moment correct bias:  𝑠̃ =
𝑠

1− 𝜌1
𝑡  

8: second moment correct bias: 𝑟̃ =
𝑟

1− 𝜌2
𝑡 
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9: Compute update  ∆ θ (t+1)  = α   
𝑠̃

𝛿+  √𝑟̃
(division and 

square root computed elementwise)  

10: Apply update  θ(t+1) =θ t -  ∆ θ (t+1) 

11: end while 

ADAM considers the exponentially decaying average of 

gradients (like momentum) and squared gradients and they 

are termed as first moment and the second moment 

respectively and hence the name Adaptive Moment 

(ADAM). The past gradients and squared gradients are 

computed and they are mainly biased towards zero. And, 

then the bias corrected first moment (gradient) and second 

moment (squared gradients) are computed and lastly the 

weights are updated accordingly. 

IV. LOSSFUNCTIONS 

It is proposed to use the popular Loss functions [16] such 

as mean squared error and binary cross entropy along with 

the above optimizers. The mean squared error computation 

is done in the following manner. For the Input layer, the 

Inputs or attributes of the first training example is taken, 

multiply with their weights, apply the activation function 

and get the output for the hidden layer. Again the same 

process is applied on this hidden layer neuron inputs and the 

final output is computed. Now the difference between the 

final output and the Actual value ( class label of data set ) is 

computed which is termed as the Error. Now, the Error is 

computed for all the training examples, square all the errors, 

and calculate the mean of the total error. This is the mean 

squared error with which the initial weights are updated and 

again the iterations starts from the input layer till the error 

converges to a minimum threshold. Let us suppose that  𝑥𝑖̂be 

the vector denoting n number of prediction values. Also, 𝑥𝑖 

be a vector denoting n number of true values, then the mean 

squared error MSE is given by 

MSE = 
1

𝑛
∑ (𝑥𝑖̂ − 𝑥𝑖)

2𝑛
𝑖=1  

The other standard loss function is binary cross entropy. 

The binary cross entropy computes the difference between 

true and predicted probability distributions. The final output 

is calculated in the same way as it is done for the mean 

squared error and this it is termed as predicted distribution 

and the class label of the data set is termed as true 

distribution. Here, the partial derivatives are computed over 

the predicted and true distributions and the error is 

computed with the difference of both the distributions. The 

loss function most popularly used for classification is given 

by 

J= - 
1

𝑚
∑ 𝑦𝑖 log 𝑦𝑖̂

𝑚
𝑖=1  + (1- 𝑦𝑖) log ( 1 – 𝑦𝑖̂)  

When the activation function is sigmoid σ(x) = 
1

1+ 𝑒−𝑥 , 

Then the loss function is given by  

J= 
1

𝑛
∑ 𝑥𝑗𝑥 ( σ(z) – y) 

V. REGULARIZATION USING DROPOUT  

It is proposed to use the recent fascinating concept 

Dropout for our work. Generally the neural network model 

suffers from one most common problems which is 

Overfitting. Overfitting means, model performs very well 

with the training data, but could not work well with the test 

data. To minimize Overfitting, Regularization process is 

applied on the model. Regularization is a technique of doing 

slight modifications to the existing model and the learning 

algorithm, so that it performs well both in training and 

testing. There are several Regularization techniques in 

Machine learning like L1 & L2 Regularization, Dropout, 

Data Augmentation, Early stopping etc. One of the Recent 

fascinating concept to perform Regularization in Deep 

Learning is Dropout [17][18]. The Dropout is carried  in 

both the Training & Test phases. In the Training phase, a 

random fraction ‘p’ of nodes and their Activations are 

ignored for each hidden layer, for each training example and 

for each iteration. In the Test Phase, all the Activations are 

considered, but reduce them by a factor ‘p’ to account for 

the missing Activations during training phase. So, to 

understand, fig 6(a) represents a particular neural network 

model, then fig 6(b) represents the neural network model 

with drop out where few nodes were dropped with ‘X’ 

symbol.  

 

Fig 6 – The neural networks model (a) and the model 

after applying drop out(b) 

VI. RESULTS  

Implementation of optimizers  

The experimentation is done in python on the CNN and 

RNN models with various optimizers, loss functions, drop 

out using the standard tensor flow, Theano and keras 

libraries.  

Tensor Flow is an open source library which is used for 

high performance numerical computation. It has very 

flexible architecture which allows easy deployment of 

computation across a variety of platforms (CPUs, GPUs, 

TPUs), and from desktops to clusters of servers to mobile 

and edge devices. It was developed by researchers and 

engineers from the Google Brain team within Google’s AI 

organization,and it comes with strong support for machine 

learning, deep learning and the flexible numerical 

computation core is used across many other scientific 

domains. 

Theano is a Python library which is used to define, 

optimize, and evaluate mathematical expressions involving 

multi-dimensional arrays efficiently. Theano features: 

Good integration with NumPy – Use numpy.ndarray in 

Theano-compiled functions. 

Efficient use of a GPU – Perform data-intensive 

computations much faster than on a CPU. 
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symbolic differentiation – Theano performs derivatives 

for functions with one or many inputs. 

speed& stability optimizations – Get the right answer for 

log(1+x) even for small values of  x. 

dynamic code generation of C – Evaluate expressions 

faster. 

Deeper unit-testing and self-verification – Detect and 

diagnose various errors. 

Keras is an efficient neural networks API, built in Python 

and capable of running on top of Tensor Flow, CNTK, or 

Theano. It was developed focusing on enabling fast 

experimentation. The ability from idea to result with the 

least possible delay is key to doing good research. 

Keras may be used if you need a deep learning library 

that:  

Allows easy and fast prototyping (because of user 

friendliness, modularity, and extensibility). 

Works well with both convolutional networks and 

recurrent networks, as well as combinations of the two. 

Runs extra ordinarily on CPU and GPU. 

Convolutional neural networks –  

Here the Adagrad, RmsProp, ADAM optimizers are 

applied on convolutional neural networks model and the 

corresponding Accuracy is verified and then the comparison 

is done among the three optimizers. 

The Algorithm for the optimizer implementation on 

convolutional neural network model is  

1. Initialize the Convolutional neural network model with 

the sequential classifier 

2. Apply the process of convolution 

3. Apply the process of pooling 

4. Apply the process of flattening 

5. The model is built with the Input and output layers 

6. Compile the CNN model using an optimizer and loss 

function 

7. The images are made to fit for the CNN  

8. The training and test data sets were generated 

9. Now, Run the CNN model with some epochs 

 

Fig 7 – The Convolutional neural networks model 

The convolutional neural network model(refer fig 7) is 

developed, the various optimizers and loss functions are 

applied on the model and the Accuracy is verified. The CNN 

model comprises of Input image, which is passed to the first 

convolutional layer, then to the first max pooling layer. 

Then the data from this first max pooling layer is given to 

the second convolutional layer and then to the second max 

pooling layer. After this phase, the flattening process is 

applied and then the data is passed to the input layer of 

traditional artificial neural network and then to the output 

layer. Now, Let us elaborate the application of optimizers on 

convolutional neural networks model in a detailed way. The 

data set containing images of cats and dogs is considered 

and this data set is further divided into training and testing 

data sets. The input matrix is considered with 64x64 pixels 

and perform the convolution process by taking a filter of 

size 3x3. This convolution process is applied on the input 

matrix by taking various filters and produce a convolution 

layer by using the activation function RELU. Then the 

MAX Pooling of size 2x2 is applied on the convolution 

layer and produce the pooling layer. This pooling layer 

which is in two dimensional form is converted into one 

dimensional form which is referred as Flattening. This 

flattened data is given as inputs to the Input layer of 

Artificial neural networks. Then the input layer is designed 

as Dense layer with 128 neurons by using the activation 

function RELU and it is passed to the dense output layer 

comprising of 1 neuron and using the activation function 

Sigmoid. Then by adopting a particular optimizer, a loss 

function, the code is compiled by considering the needed 

metrics as Accuracy. Now, the data is generated from the 

images of training and testing data sets using a function 

ImageDataGenerator and the code is run for specific number 

of epochs. In this paper, the various optimizers Adagrad, 

RmsProp, Adam are applied on the convolutional neural 

networks model (refer table 2) and their corresponding 

Accuracy is verified.  

 

Fig 8 – The training Accuracy of convolutional neural 

networks model by Irwan Bello et al 
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Fig 9 – The training Accuracy of convolutional neural 

networks model by SVG Reddy et al 

Table 2 – The Accuracy of convolutional neural 

networks using various optimizers 

Optimizer 
Accuracy 

( Convolutional neural networks ) 

Adagrad 69.75 

RmsProp 50.75 

Adam 74.12 

 

Recently , Irwan Bello et al [19] has carried out the work 

on convolutional neural networks using Adam and various 

other optimizers and they achieved an Accuracy of  nearly 

‘68’ during the training of data set(refer fig 8). And in this 

paper, the optimizer Adam was applied on convolutional 

neural networks model and the code has run with an 

Accuracy of 74.12 (refer fig 9). It is observed that while 

implementing  convolutional neural networks, the optimizer 

Adam is running with maximum Accuracy (refer table 2) 

than the other optimizers Adagrad and RmsProp optimizers. 

Recurrent Neural networks –  

Here the Adagrad, RmsProp, ADAM optimizers are 

applied on Recurrent neural networks model and the 

corresponding Loss is verified and then the comparison is 

done among the three optimizers. 

The Algorithm for the optimizer implementation on 

Recurrent neural network model is  

1. Import the training data set 

2. The data set is scaled and transformed to the values 

between 0 to 1. 

3. Initialize the Recurrent neural network model with 

sequential as regressor 

4. The model is built with Input layer, hidden layer and 

output layer 

5. Compile the RNN model using an optimizer and loss 

function 

6. Run the RNN model with some epochs 

Now the predictions are done on the test data set and 

visualize the results. 

 

Fig 10 – The Recurrent neural networks model 

The Recurrent neural network model(refer fig 10) is 

developed, the various optimizers and loss functions are 

applied on the model and the Loss is verified. The RNN model 

comprises of Input layer, then passed to the first LSTM layer, 

second, third and fourth LSTM layer and then to the output 

layer. Now, Let us elaborate the application of optimizers on 

Recurrent neural networks model in a detailed way. Here the 

data set is related to google stock prices wherein it contains the 

real stock prices and using this data the RNN model would 

predict the google stock price. Initially, the data set is loaded 

and all the data is scaled to values between 0 to 1 and generate 

the training and test data. The training data is processed for a 

batch of 60 records. Now, the RNN model is built with the 

sequential model as the Regressor with one input layer, three 

hidden layers and one output layer. The input and hidden 

layers consisting of 50 neurons at each layer which are referred 

as Long short term memory(LSTM) units  and the output layer 

consisting of one neuron. Now, the RNN model training data 

is compiled with a particular optimizer, a  loss function and it 

is run by fixing the number of epochs. After the code is run, 

from the test data the real stock price is retrieved and then 

compute the predicted price of the stock and the results are 

processed for visualization. So, the various optimization 

algorithms Adagrad, RmsProp and Adam are applied on the 

Recurrent neural networks model(refer table 3) and the 

corresponding Loss is verified. 

 
Fig 11 – The training Loss of Deep neural  

networks by Mohaksrivatsava et al 
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Fig 12 – The training Loss of Recurrent neural networks 

model by SVG Reddy et al 

Table 3 – The Loss of Recurrent neural networks using 

various optimizers 

 

The Author Mohaksrivatsava et al [20] has carried out the 

work on deep neural networks using Adam and Adagrad 

optimizers and they achieved a loss of  nearly ‘1.0’ during 

the training of data set(refer fig 11). And in this paper, the 

optimizer Adam and the loss function mean squared error 

was applied on Recurrent neural networks and the code has 

run with minimum Loss ‘0.14’ (refer fig 12). It is observed 

that while implementing  recurrent neural networks, the 

optimizer Adam is running with minimum Loss than the 

other optimizers Adagrad and RmsProp(refer table 3). 

Implementation of Loss functions  

The popular Loss functions such as binary cross entropy, 

mean squared error are applied along with the optimizers 

Adagrad, RmsProp, ADAM on the convolutional neural 

networks model and the corresponding Accuracy is verified. 

Table 4 – The Accuracy of convolutional neural 

networks model using various Loss functions 

Loss function, 

Optimizer 

Accuracy  

(Convolutional neural 

networks  model) 

Binary cross entropy, 

Adam 
74.12 

Mean squared error, 

Adam 
72.12 

Mean squared error, 

RmsProp 
76.62 

 

It is observed that while implementing convolutional 

neural networks model, the Loss function Mean squared 

error along with optimizer RmsProp has given more 

Accuracy of 76.62 than the other loss functions and 

optimizers (refer table 4). 

And the Loss functions binary cross entropy, mean 

squared error are applied along with the optimizers Adagrad, 

RmsProp, ADAM on the Recurrent neural networks model 

and the corresponding Loss is verified. 

Table 5 – The Loss of Recurrent neural networks model 

using various Loss functions 

 

It is observed that the loss function mean squared error 

and the optimizer Adam was applied on Recurrent neural 

networks model and the code has run with minimum Loss 

‘0.14’ compared to other loss functions and optimizers(refer 

table 5).  

Implementation using Dropout  

The Dropout concept is applied on the Convolutional 

neural networks model and the Accuracy is verified for 

different values of Drop put parameter ‘p’. The ‘p’ values 

0.1, 0.2, 0.3 are added and applied to the sequential model 

of the CNN and run the model.  

It is observed that the Accuracy of 70 is maximum for the 

DropOut ‘p’ value of ‘0.1’ compared to ‘p’ value of ‘0.2’, 

‘0.3’ for the Convolutional neural networks model(refer 

table 6). 

Table 6 – The Accuracy of convolutional neural 

networks model using Dropout 

DropOut 

‘p’ value 

Accuracy 

(Convolutional neural networks model) 

0.1 70.00 

0.2 66.87 

0.3 46.88 

 

And the same Dropout is applied on the Recurrent neural 

networks model and the Loss is verified for different values 

of Drop put parameter ‘p’. The ‘p’ values 0.1, 0.2, 0.3 are 

added and applied to the sequential model of the RNN and 

run the model.  

Table 7 – The Loss of Recurrent neural networks using 

Dropout 

DropOut 

‘p’ value 

Loss 

( Recurrent neural networks model ) 

0.1 0.12 

0.2 0.14 

0.3 0.16 

 

 

 

Optimizer 
Loss 

(Recurrent neural networks) 

Adagrad 0.15 

RmsProp 0.25 

Adam 0.14 

Loss function, 

Optimizer 

Loss 

(Recurrent neural networks )  

Mean squared error, 

Adam 
0.14 

Binary cross entropy, 

Adam 
43.89 

Binary cross entropy, 

Adagrad 
43.89 

https://www.openaccess.nl/en/open-publications
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Similarly it is observed that the Loss of 0.12 is minimum 

at a DropOut ‘p’ value of ‘0.1’ for the Recurrent neural 

networks model. It tells that ignoring the nodes should be 

very minimum in order to perform the  Regularization which 

produces more Accuracy or minimum Loss (refer table 7).  

VII. CONCLUSION 

The two Deep Learning algorithms such as Convolutional 

neural networks and Recurrent neural networks are 

implemented using optimizers (Adagrad, RmsProp, 

ADAM), loss functions(Mean squared error, binary cross 

entropy) and Dropout concept. Using the Adam Optimizer, 

maximum Accuracy of 74.12 is achieved with the 

Convolutional neural networks model and it has run with 

minimum loss of 0.14 with the Recurrent neural networks 

model. Using the Mean squared error loss function and 

RmsProp optimizer, maximum Accuracy is observed for the 

convolutional neural networks model and by using the Mean 

squared error loss function and Adam optimizer  the 

algorithm is run with the minimum Loss for the Recurrent 

neural networks model. While performing the 

Regularization, the Dropout is applied and it is observed that 

the maximum Accuracy is achieved for the Convolutional 

neural networks model with a Drop out parameter ‘p’ value 

of ‘0.1’ and with this same value of Dropout parameter ‘p’ 

value of ‘0.1’, the Recurrent neural networks model has run 

with the minimum loss. As a future work, the above two 

Deep Learning algorithms CNN and RNN may be 

implemented using various fuzzy functions, and by 

initializing the weights mathematically instead of Random 

weights. 
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