
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2018

448

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

Abstract: Deep Learning is gaining lot of prominence due to

its break through results in various fields like Computer Vision,

Natural Language Processing, Time Series Analysis, Health

Care etc. Earlier, the Deep Learning was implemented using the

batch and stochastic gradient descent algorithms and some

optimizers which lead to very less performance of the models. But

today, lot of work is going on for the enhancement of the

performance of Deep Learning using various optimization

techniques. So, in this context, It is proposed to build a Deep

Learning model using various Optimizers (Adagrad, RmsProp,

Adam), Loss functions (mean squared error, binary cross

entropy) and Dropout concept for the Convolutional neural

networks and Recurrent neural networks and verify the

performance such as Accuracy and Loss of the model. The

proposed model has achieved maximum Accuracy when Adam

optimizer and mean squared error loss function are applied on

convolutional neural networks and the model is run with

minimum Loss when the same Adam optimizer and mean

squared error loss function are applied on Recurrent neural

networks. While performing the Regularization of the model, the

maximum Accuracy is achieved when the Dropout with a

minimum fraction ‘p’ of nodes is applied on convolutional neural

networks and the model has run with minimum Loss when the

same dropout value is applied on Recurrent neural networks.

Keywords : Deep Learning, Convolutional Neural Networks,

CNN, Recurrent Neural Networks, RNN, Computer Vision,

Natural language processing, Time Series Analysis.

I. INTRODUCTION

Deep Learning

Deep Learning [1][2][3] is a machine learning technique

which has been applied in various domains like computer

vision, natural language processing, robotics, health care

and artificial intelligence etc. In Deep Learning, the learning

is achieved at various levels. The inputs are processed at the

initial level, transform into an abstract form, at the next

level, still processed into more precise form and likewise the

learning is achieved more deeper. In this paper, the model is

built using the Deep Learning algorithms such as

Convolutional neural networks(CNN), Recurrent neural

networks(RNN). Firstly, Let’s understand the Convolutional

neural networks. The Convolutional neural networks [4][5]

are used mainly to identify or recognize the image which is

termed as computer vision. Computer Vision is to make

Manuscript published on 30 December 2018.
*Correspondence Author(s)

S.V.G.Reddy, Associate Professor, Dept. of CSE, GIT, GITAM
University,Hyderabad, Telangana, India.

Prof. K.Thammi Reddy, Professor, Dept. of CSE, GIT, GITAM

University,Hyderabad, Telangana, India
Prof. V.ValliKumari, Professor, Dept. of CS & SE, college of

engineering, Andhra University, Andhra Pradesh, India

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

computers understand images and videos. It is used for

optical character recognition, face detection, smile detection,

object recognition etc. The supervised Deep Learning

algorithm, Convolutional Neural Networks is a big

breakthrough in the field of Computer Vision. The process

of convolution is done in the following manner. Consider an

input image containing pixels and its binary representation

of pixels is taken. Here the binary representation of an input

image is taken as a matrix of order 7 x 7 (refer fig 1). To

extract few characteristics of the image such as edge

detection, emboss, blur etc., various filters or feature

detectors would be used. So, a feature detector or a filter is

taken as a matrix of order 3 x 3 (refer fig 2) with random

elements and compared with the first 3 x 3 order of input

vector (which means the zeroth, first, second rows and

zeroth, first, second columns). So, the logical AND

operation is applied on the first element (zeroth row and

zeroth column) of feature detector or filter and with the

corresponding first element (zeroth row and zeroth column)

of the input vector and check for the output(refer table 1)

and count the total number of combinations which are

producing an output of bit ‘1’. Here, the total number of

combinations are ‘zero’ producing an output of 1. After the

first iteration, the number of combinations ‘0’ is written as

the first element in the 5 x 5 two dimensional feature map.

Next, when the comparison is done with the filter and the

next 3 x 3 elements of Input vector (zeroth, first, second

rows and first, second, third columns) , the total number of

combinations are ‘one’ producing an output of 1 and so on.

After the second iteration the number of combinations ‘1’ is

written as the second element in the 5 x 5 two dimensional

feature map. Likewise, by mapping the total number of

combinations which are producing output 1, it generates the

complete two dimensional feature map. This is the process

of convolution. A big size input vector would be compared

with a small size filter or feature detector and produce a

moderate size feature map. Similarly, the various filters or

feature detectors are applied on the given input vector and

produce several corresponding feature maps and the set of

all these feature maps would be termed as convolution layer.

Here, the Rectified linear unit (ReLU) is used as the

activation function. And then the Maximum Pooling process

is applied on a feature map. Here, a matrix of order 2 x 2 is

considered for this process. It means, from the feature map,

by reading the first 2 x 2 matrix elements (zeroth, first rows

and columns), the largest element is picked and map it as the

first element in the new matrix called Pooled feature map.

Next, for the second iteration, the next 2 x 2 matrix elements

(zeroth, first rows and first, second columns) of feature map

are considered and pick the largest element and map it as the

next element of pooled feature map and in the similar way

Optimization of Deep Learning using various

Optimizers, Loss functions and Dropout
S. V. G. Reddy, K.Thammi Reddy, V.Valli Kumari

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/

Optimization of Deep Learning using Various Optimizers, Loss Functions and Dropout

449

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

the complete pooled feature map matrix is generated.

Now, for all the feature maps of the convolution layer, the

new set of pooled feature maps are generated and it is

termed as pooled convolution layer. Then, every pooled

feature map of pooling layer which is a two dimensional

matrix is Flattened into a one dimensional matrix in a

sequential way (refer Fig 3) and this matrix is given to the

Input layer of Artificial neural network and then passed to

the hidden layers and to the output layer and produce the

final output. It means for the convolutional neural network

model, the image is given as input which is passed through

the convolution layer, pooling layer and the flattening is

applied and passed to the Input layer of Artificial neural

network, hidden layer and then to the output layer and

finally the model identifies or recognizes the image(refer fig

3).

Table 1 – The convolution process

Feature detector

or filter
Input vector Output

0 0 0

0 1 0

1 0 0

1 1 1

Fig 1 – The image, pixels and its binary representation

Fig 2 – The process of convolution of an image

Now, let’s comprehend the Recurrent neural networks.

The concept of Recurrent neural networks [6][7][8] is

predominantly applied in the fields of natural language

modelling, machine translation and speech recognition. The

main technique behind the Recurrent neural networks is the

sequence of input. The Recurrent neural network would be

having series or sets of input layer, hidden layer, output

layer(refer fig 4 & fig 5) and each layer containing required

number of neurons.

Fig 3 – The overall process of convolutional neural

networks

Initially, for the first set of input, hidden layer after

applying the activation function, there would be an output

and this output is given as the input to the second set of

input layer, hidden layer and output layer and the

consequent outputs are passed to the next set of layers till

the final output is achieved. The networks are termed as

Recurrent neural networks as this step is carried out at each

and every step for a series of input, hidden and output

layers. To predict a word in a sentence, the network should

remember the word of previous iteration. As the network is

remembering the word of previous iteration it acts as a

memory storage unit and as there are long series of input,

hidden and output layers, this concept was also referred as

Long short term memory networks or LSTM networks [9].

The various forms of Recurrent neural networks are ‘one to

many’, ‘many to one’ and ‘many to many’. The first form

‘one to many’ indicates if the input is ‘one’ image, the

Recurrent neural network model produces ‘many’ narrations

of the image. It means if the image contains various objects,

then the model initially uses convolutional neural network

and identifies all the objects of the image and then by using

recurrent neural networks it gives the narration of all the

objects as many words and hence it is ‘one to many’. The

second form ‘many to one’ indicates if there are ‘many’

words or sentences as the input, then the model uses purely

recurrent neural networks and produces the final outcome as

positive or negative feedback which is ‘one’ output and

hence it is ‘many to one’. And the third form ‘many to

many’ indicates if there are ‘many’ words or sentences as

input, then the model again uses recurrent neural network

and translate into ‘many’ words or sentences as output and it

is referred as ‘many to many’. Here the concept of

optimization is dealt in chapter 2, the optimizers Adagrad,

RmsProp, ADAM and their algorithms are narrated in

chapter 3, the Loss functions in chapter 4, drop out concept

in chapter 5 and the total results are organized in chapter 6.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2018

450

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

Fig 4 – The Input layer, hidden layer & output layer of

Recurrent neural networks

Fig 5 – The series of Input layer, hidden layer and

output layer of Recurrent neural networks

II. OPTIMIZATIONIN DEEP LEARNING

The Gradient Descent [10][11][12] technique is one of the

most popular algorithms to perform optimization for the

neural networks. To comprehend, imagine a person standing

on a top of a mountain and if he want to reach the bottom

most point of the mountain with the condition that he is

blind with no visibility. The Best way is to choose the

surface which tends to descend as the first step. By

following the similar strategy, he takes different steps to

reach the bottom most point. Here, we need to find the best

parameters for our learning algorithm and its corresponding

cost. Here cost is nothing but the performance of the

algorithm for different values of the parameters. The

Gradient descent is having various variants such as Batch,

Stochastic and mini Batch. The Batch Gradient descent uses

the entire training data set and computes the gradient of the

cost function with respect to the parameters. The Stochastic

Gradient descent is the one which performs the parameter

update for every training example. And the mini Batch takes

the best of above two strategies by performing the parameter

update for every mini batch of training examples. Initially

the deep learning has used the basic gradient descent

algorithms with which the models used to run with very less

performance. In this paper, It is proposed to use few

gradient descent optimization algorithms such as Adagrad,

RmsProp and ADAM for both convolutional neural network

and recurrent neural network models.

III. OPTIMIZERS

The first proposed optimizer is Adagrad. The Adagrad

[13] is a Gradient descent optimization algorithm which

adapts the learning rate. Here , the required parameters are

Global learning rate α, mini batch size m, Initial weights θ t ,

Small constant, δ, perhaps 10−7 , for numerical stability
1: Gradient accumulation variable is initialized r=0

2: while (condition !=stopping criterion) do

3: consider a mini batch of m examples from the training

set

4: Compute gradient estimate ∇θ∑ 𝐽 𝑚
 𝑖=1 (𝜃𝑡 ; 𝑥(𝑖), 𝑦(𝑖))

5: Accumulate squared gradient r = r + (∇θ J Ꙩ ∇θ J)

6: Compute update ∆ θ (t+1) =
𝛼

𝛿+√𝑟
Ꙩ ∇θ J (division and

square root computed elementwise)

7: Apply update θ (t+1) = θ t -∆ θ (t+1)

8: end while

Adagrad considers the low learning rates for the

parameters occurring frequently and high learning rates for

the parameters occurring infrequently. That’s why it is said

that it is well suitable for sparse data. Here, the mini batch

of training examples are taken, compute the gradient, and

square the Error (gradient), and then the weights are

updated.

The second optimizer RmsProp [14] is an other optimizer

algorithm which computes the learning rate with an

exponential average of squared gradients. Here , the

required parameters are Global learning rate α, Decay rate ρ,

Mini batch size m, Initial weights θ t , Small constant, δ,

usually 10−6 , for numerical stability

1: Accumulation variable is initialized r=0

2: while (condition !=stopping criterion) do

3: consider a mini batch of m examples from the training

set

4: Compute gradient estimate ∇θ∑ 𝐽𝑚
𝑖=1 (𝜃𝑡 ; 𝑥(𝑖), 𝑦(𝑖))

5: Accumulate squared gradient r= ρ r + (1- ρ) (∇Θ J Ꙩ

∇Θ J)

6: Compute update ∆θ (t+1) =
𝛼

𝛿+√𝑟
Ꙩ ∇θ J (division and

square root computed elementwise)

7: Apply update θ(t+1) =θ t - ∆ θ (t+1)

8: end while

Here in RmsProp, the mini batch of training examples are

taken, compute the gradient, and square the Error (gradient)

with decay rate , and then the weights are updated.

The third optimizer ADAM[15] is one of the most

efficient optimizer algorithm that computes the learning rate

for each parameter. Here , the required parameters are

Global learning rate α, Decay rates for moment estimates ρ1

and ρ2, Mini batch size m, Initial weights θ t, Small

constant, δ, usually 10−8 , for numerical stability

1: Initialize 1st and 2nd moment variables r=0 and s=0

2: while (condition !=stopping criterion) do

3: consider a mini batch of m examples from the training

set

4:Computegradient estimate∇θ∑ 𝐽𝑚
𝑖=1 (𝜃𝑡 ; 𝑥(𝑖), 𝑦(𝑖))

5: Update biased first moment estimate

 s = ρ1 s + (1 − ρ1) ∇θ J

6: Update biased second moment estimate

 r = ρ2 r + (1 − ρ2) (∇θ J Ꙩ ∇θ J)

7: first moment correct bias: 𝑠̃ =
𝑠

1− 𝜌1
𝑡

8: second moment correct bias: 𝑟̃ =
𝑟

1− 𝜌2
𝑡

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/

Optimization of Deep Learning using Various Optimizers, Loss Functions and Dropout

451

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

9: Compute update ∆ θ (t+1) = α
𝑠̃

𝛿+ √𝑟̃
(division and

square root computed elementwise)

10: Apply update θ(t+1) =θ t - ∆ θ (t+1)

11: end while

ADAM considers the exponentially decaying average of

gradients (like momentum) and squared gradients and they

are termed as first moment and the second moment

respectively and hence the name Adaptive Moment

(ADAM). The past gradients and squared gradients are

computed and they are mainly biased towards zero. And,

then the bias corrected first moment (gradient) and second

moment (squared gradients) are computed and lastly the

weights are updated accordingly.

IV. LOSSFUNCTIONS

It is proposed to use the popular Loss functions [16] such

as mean squared error and binary cross entropy along with

the above optimizers. The mean squared error computation

is done in the following manner. For the Input layer, the

Inputs or attributes of the first training example is taken,

multiply with their weights, apply the activation function

and get the output for the hidden layer. Again the same

process is applied on this hidden layer neuron inputs and the

final output is computed. Now the difference between the

final output and the Actual value (class label of data set) is

computed which is termed as the Error. Now, the Error is

computed for all the training examples, square all the errors,

and calculate the mean of the total error. This is the mean

squared error with which the initial weights are updated and

again the iterations starts from the input layer till the error

converges to a minimum threshold. Let us suppose that 𝑥𝑖̂be

the vector denoting n number of prediction values. Also, 𝑥𝑖

be a vector denoting n number of true values, then the mean

squared error MSE is given by

MSE =
1

𝑛
∑ (𝑥𝑖̂ − 𝑥𝑖)

2𝑛
𝑖=1

The other standard loss function is binary cross entropy.

The binary cross entropy computes the difference between

true and predicted probability distributions. The final output

is calculated in the same way as it is done for the mean

squared error and this it is termed as predicted distribution

and the class label of the data set is termed as true

distribution. Here, the partial derivatives are computed over

the predicted and true distributions and the error is

computed with the difference of both the distributions. The

loss function most popularly used for classification is given

by

J= -
1

𝑚
∑ 𝑦𝑖 log 𝑦𝑖̂

𝑚
𝑖=1 + (1- 𝑦𝑖) log (1 – 𝑦𝑖̂)

When the activation function is sigmoid σ(x) =
1

1+ 𝑒−𝑥 ,

Then the loss function is given by

J=
1

𝑛
∑ 𝑥𝑗𝑥 (σ(z) – y)

V. REGULARIZATION USING DROPOUT

It is proposed to use the recent fascinating concept

Dropout for our work. Generally the neural network model

suffers from one most common problems which is

Overfitting. Overfitting means, model performs very well

with the training data, but could not work well with the test

data. To minimize Overfitting, Regularization process is

applied on the model. Regularization is a technique of doing

slight modifications to the existing model and the learning

algorithm, so that it performs well both in training and

testing. There are several Regularization techniques in

Machine learning like L1 & L2 Regularization, Dropout,

Data Augmentation, Early stopping etc. One of the Recent

fascinating concept to perform Regularization in Deep

Learning is Dropout [17][18]. The Dropout is carried in

both the Training & Test phases. In the Training phase, a

random fraction ‘p’ of nodes and their Activations are

ignored for each hidden layer, for each training example and

for each iteration. In the Test Phase, all the Activations are

considered, but reduce them by a factor ‘p’ to account for

the missing Activations during training phase. So, to

understand, fig 6(a) represents a particular neural network

model, then fig 6(b) represents the neural network model

with drop out where few nodes were dropped with ‘X’

symbol.

Fig 6 – The neural networks model (a) and the model

after applying drop out(b)

VI. RESULTS

Implementation of optimizers

The experimentation is done in python on the CNN and

RNN models with various optimizers, loss functions, drop

out using the standard tensor flow, Theano and keras

libraries.

Tensor Flow is an open source library which is used for

high performance numerical computation. It has very

flexible architecture which allows easy deployment of

computation across a variety of platforms (CPUs, GPUs,

TPUs), and from desktops to clusters of servers to mobile

and edge devices. It was developed by researchers and

engineers from the Google Brain team within Google’s AI

organization,and it comes with strong support for machine

learning, deep learning and the flexible numerical

computation core is used across many other scientific

domains.

Theano is a Python library which is used to define,

optimize, and evaluate mathematical expressions involving

multi-dimensional arrays efficiently. Theano features:

Good integration with NumPy – Use numpy.ndarray in

Theano-compiled functions.

Efficient use of a GPU – Perform data-intensive

computations much faster than on a CPU.

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2018

452

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

symbolic differentiation – Theano performs derivatives

for functions with one or many inputs.

speed& stability optimizations – Get the right answer for

log(1+x) even for small values of x.

dynamic code generation of C – Evaluate expressions

faster.

Deeper unit-testing and self-verification – Detect and

diagnose various errors.

Keras is an efficient neural networks API, built in Python

and capable of running on top of Tensor Flow, CNTK, or

Theano. It was developed focusing on enabling fast

experimentation. The ability from idea to result with the

least possible delay is key to doing good research.

Keras may be used if you need a deep learning library

that:

Allows easy and fast prototyping (because of user

friendliness, modularity, and extensibility).

Works well with both convolutional networks and

recurrent networks, as well as combinations of the two.

Runs extra ordinarily on CPU and GPU.

Convolutional neural networks –

Here the Adagrad, RmsProp, ADAM optimizers are

applied on convolutional neural networks model and the

corresponding Accuracy is verified and then the comparison

is done among the three optimizers.

The Algorithm for the optimizer implementation on

convolutional neural network model is

1. Initialize the Convolutional neural network model with

the sequential classifier

2. Apply the process of convolution

3. Apply the process of pooling

4. Apply the process of flattening

5. The model is built with the Input and output layers

6. Compile the CNN model using an optimizer and loss

function

7. The images are made to fit for the CNN

8. The training and test data sets were generated

9. Now, Run the CNN model with some epochs

Fig 7 – The Convolutional neural networks model

The convolutional neural network model(refer fig 7) is

developed, the various optimizers and loss functions are

applied on the model and the Accuracy is verified. The CNN

model comprises of Input image, which is passed to the first

convolutional layer, then to the first max pooling layer.

Then the data from this first max pooling layer is given to

the second convolutional layer and then to the second max

pooling layer. After this phase, the flattening process is

applied and then the data is passed to the input layer of

traditional artificial neural network and then to the output

layer. Now, Let us elaborate the application of optimizers on

convolutional neural networks model in a detailed way. The

data set containing images of cats and dogs is considered

and this data set is further divided into training and testing

data sets. The input matrix is considered with 64x64 pixels

and perform the convolution process by taking a filter of

size 3x3. This convolution process is applied on the input

matrix by taking various filters and produce a convolution

layer by using the activation function RELU. Then the

MAX Pooling of size 2x2 is applied on the convolution

layer and produce the pooling layer. This pooling layer

which is in two dimensional form is converted into one

dimensional form which is referred as Flattening. This

flattened data is given as inputs to the Input layer of

Artificial neural networks. Then the input layer is designed

as Dense layer with 128 neurons by using the activation

function RELU and it is passed to the dense output layer

comprising of 1 neuron and using the activation function

Sigmoid. Then by adopting a particular optimizer, a loss

function, the code is compiled by considering the needed

metrics as Accuracy. Now, the data is generated from the

images of training and testing data sets using a function

ImageDataGenerator and the code is run for specific number

of epochs. In this paper, the various optimizers Adagrad,

RmsProp, Adam are applied on the convolutional neural

networks model (refer table 2) and their corresponding

Accuracy is verified.

Fig 8 – The training Accuracy of convolutional neural

networks model by Irwan Bello et al

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/
https://github.com/tensorflow/tensorflow
https://github.com/Microsoft/cntk
https://github.com/Theano/Theano

Optimization of Deep Learning using Various Optimizers, Loss Functions and Dropout

453

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

Fig 9 – The training Accuracy of convolutional neural

networks model by SVG Reddy et al

Table 2 – The Accuracy of convolutional neural

networks using various optimizers

Optimizer
Accuracy

(Convolutional neural networks)

Adagrad 69.75

RmsProp 50.75

Adam 74.12

Recently , Irwan Bello et al [19] has carried out the work

on convolutional neural networks using Adam and various

other optimizers and they achieved an Accuracy of nearly

‘68’ during the training of data set(refer fig 8). And in this

paper, the optimizer Adam was applied on convolutional

neural networks model and the code has run with an

Accuracy of 74.12 (refer fig 9). It is observed that while

implementing convolutional neural networks, the optimizer

Adam is running with maximum Accuracy (refer table 2)

than the other optimizers Adagrad and RmsProp optimizers.

Recurrent Neural networks –

Here the Adagrad, RmsProp, ADAM optimizers are

applied on Recurrent neural networks model and the

corresponding Loss is verified and then the comparison is

done among the three optimizers.

The Algorithm for the optimizer implementation on

Recurrent neural network model is

1. Import the training data set

2. The data set is scaled and transformed to the values

between 0 to 1.

3. Initialize the Recurrent neural network model with

sequential as regressor

4. The model is built with Input layer, hidden layer and

output layer

5. Compile the RNN model using an optimizer and loss

function

6. Run the RNN model with some epochs

Now the predictions are done on the test data set and

visualize the results.

Fig 10 – The Recurrent neural networks model

The Recurrent neural network model(refer fig 10) is

developed, the various optimizers and loss functions are

applied on the model and the Loss is verified. The RNN model

comprises of Input layer, then passed to the first LSTM layer,

second, third and fourth LSTM layer and then to the output

layer. Now, Let us elaborate the application of optimizers on

Recurrent neural networks model in a detailed way. Here the

data set is related to google stock prices wherein it contains the

real stock prices and using this data the RNN model would

predict the google stock price. Initially, the data set is loaded

and all the data is scaled to values between 0 to 1 and generate

the training and test data. The training data is processed for a

batch of 60 records. Now, the RNN model is built with the

sequential model as the Regressor with one input layer, three

hidden layers and one output layer. The input and hidden

layers consisting of 50 neurons at each layer which are referred

as Long short term memory(LSTM) units and the output layer

consisting of one neuron. Now, the RNN model training data

is compiled with a particular optimizer, a loss function and it

is run by fixing the number of epochs. After the code is run,

from the test data the real stock price is retrieved and then

compute the predicted price of the stock and the results are

processed for visualization. So, the various optimization

algorithms Adagrad, RmsProp and Adam are applied on the

Recurrent neural networks model(refer table 3) and the

corresponding Loss is verified.

Fig 11 – The training Loss of Deep neural

networks by Mohaksrivatsava et al

http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-7 Issue-4s2, December 2018

454

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

Fig 12 – The training Loss of Recurrent neural networks

model by SVG Reddy et al

Table 3 – The Loss of Recurrent neural networks using

various optimizers

The Author Mohaksrivatsava et al [20] has carried out the

work on deep neural networks using Adam and Adagrad

optimizers and they achieved a loss of nearly ‘1.0’ during

the training of data set(refer fig 11). And in this paper, the

optimizer Adam and the loss function mean squared error

was applied on Recurrent neural networks and the code has

run with minimum Loss ‘0.14’ (refer fig 12). It is observed

that while implementing recurrent neural networks, the

optimizer Adam is running with minimum Loss than the

other optimizers Adagrad and RmsProp(refer table 3).

Implementation of Loss functions

The popular Loss functions such as binary cross entropy,

mean squared error are applied along with the optimizers

Adagrad, RmsProp, ADAM on the convolutional neural

networks model and the corresponding Accuracy is verified.

Table 4 – The Accuracy of convolutional neural

networks model using various Loss functions

Loss function,

Optimizer

Accuracy

(Convolutional neural

networks model)

Binary cross entropy,

Adam
74.12

Mean squared error,

Adam
72.12

Mean squared error,

RmsProp
76.62

It is observed that while implementing convolutional

neural networks model, the Loss function Mean squared

error along with optimizer RmsProp has given more

Accuracy of 76.62 than the other loss functions and

optimizers (refer table 4).

And the Loss functions binary cross entropy, mean

squared error are applied along with the optimizers Adagrad,

RmsProp, ADAM on the Recurrent neural networks model

and the corresponding Loss is verified.

Table 5 – The Loss of Recurrent neural networks model

using various Loss functions

It is observed that the loss function mean squared error

and the optimizer Adam was applied on Recurrent neural

networks model and the code has run with minimum Loss

‘0.14’ compared to other loss functions and optimizers(refer

table 5).

Implementation using Dropout

The Dropout concept is applied on the Convolutional

neural networks model and the Accuracy is verified for

different values of Drop put parameter ‘p’. The ‘p’ values

0.1, 0.2, 0.3 are added and applied to the sequential model

of the CNN and run the model.

It is observed that the Accuracy of 70 is maximum for the

DropOut ‘p’ value of ‘0.1’ compared to ‘p’ value of ‘0.2’,

‘0.3’ for the Convolutional neural networks model(refer

table 6).

Table 6 – The Accuracy of convolutional neural

networks model using Dropout

DropOut

‘p’ value

Accuracy

(Convolutional neural networks model)

0.1 70.00

0.2 66.87

0.3 46.88

And the same Dropout is applied on the Recurrent neural

networks model and the Loss is verified for different values

of Drop put parameter ‘p’. The ‘p’ values 0.1, 0.2, 0.3 are

added and applied to the sequential model of the RNN and

run the model.

Table 7 – The Loss of Recurrent neural networks using

Dropout

DropOut

‘p’ value

Loss

(Recurrent neural networks model)

0.1 0.12

0.2 0.14

0.3 0.16

Optimizer
Loss

(Recurrent neural networks)

Adagrad 0.15

RmsProp 0.25

Adam 0.14

Loss function,

Optimizer

Loss

(Recurrent neural networks)

Mean squared error,

Adam
0.14

Binary cross entropy,

Adam
43.89

Binary cross entropy,

Adagrad
43.89

https://www.openaccess.nl/en/open-publications
http://www.ijrte.org/

Optimization of Deep Learning using Various Optimizers, Loss Functions and Dropout

455

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: ES2099017518/2019©BEIESP

Journal Website: www.ijrte.org

Similarly it is observed that the Loss of 0.12 is minimum

at a DropOut ‘p’ value of ‘0.1’ for the Recurrent neural

networks model. It tells that ignoring the nodes should be

very minimum in order to perform the Regularization which

produces more Accuracy or minimum Loss (refer table 7).

VII. CONCLUSION

The two Deep Learning algorithms such as Convolutional

neural networks and Recurrent neural networks are

implemented using optimizers (Adagrad, RmsProp,

ADAM), loss functions(Mean squared error, binary cross

entropy) and Dropout concept. Using the Adam Optimizer,

maximum Accuracy of 74.12 is achieved with the

Convolutional neural networks model and it has run with

minimum loss of 0.14 with the Recurrent neural networks

model. Using the Mean squared error loss function and

RmsProp optimizer, maximum Accuracy is observed for the

convolutional neural networks model and by using the Mean

squared error loss function and Adam optimizer the

algorithm is run with the minimum Loss for the Recurrent

neural networks model. While performing the

Regularization, the Dropout is applied and it is observed that

the maximum Accuracy is achieved for the Convolutional

neural networks model with a Drop out parameter ‘p’ value

of ‘0.1’ and with this same value of Dropout parameter ‘p’

value of ‘0.1’, the Recurrent neural networks model has run

with the minimum loss. As a future work, the above two

Deep Learning algorithms CNN and RNN may be

implemented using various fuzzy functions, and by

initializing the weights mathematically instead of Random

weights.

ACKNOWLEDGEMENT

I am very much thankful to my Supervisor Prof.

K.Thammi Reddy, Co Supervisor Prof. V.ValliKumari for

their guidance and constant monitoring of my PhD work and

heartfelt gratitude to my parents and the Almighty.

REFERENCES

1. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, And A. Torralba,

“Learning Deep Features For Discriminative Localization,” In

Proceedings Of The Ieee Conference On Computer Vision And
Pattern Recognition , 2016, Pp. 2921–2929

2. Https://Www.Superdatascience.Com/Deeplearning/

3. https://bhatsnotes.com/2016/12/23/artificial-intelligence-t-hub/
4. M. D. Zeiler And R. Fergus, “Visualizing And Understanding

Convolutional Networks,” In European Conference On Computer

Vision Springer, 2014, Pp. 818–833
5. A.Negi, C.Bhagvati, B.Krishna, An OCR system for Telugu, IEEE

Proceedings of Sixth International conference on Document Analysis

and Recognition, DOI: 10.1109/ICDAR.2001.953958
6. Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez, (Member,

Ieee), And Javier Ortega-Garcia, (Fellow, Ieee), “ Exploring

Recurrent Neural Networks For On-Line Handwritten Signature
Biometrics”, Ieee Access, Volume 6, P 5128-5138, 2018,

7. A.Graves, A. R. Mohamed, and G. Hinton, ‘‘Towards end-to-end

speech recognition with recurrent neural networks,’’ in Proc. Int.

Conf. Mach. Learn. , vol. 14. 2014, pp. 1764–1772.

8. S.Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, ‘‘Gradient

flow in recurrent nets: The difficulty of learning long-term
dependencies,’’ in A Field Guide to Dynamical Recurrent Networks,

S. C. Kremer and J. F. Kolen, Eds. 2001.

9. S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’
Neural Comput. , vol. 9, no. 8, pp. 1735–1780, 1997.

10. Sebastian Ruder, “An Overview Of Gradient Descent Algorithms”,

Cornell University Library, Arxiv: 1609.04747[Cs. Lg]

11. AnirbanSarkar, AdityaChattopadhyay, PrantikHowlader, V.
Balasubramanian, Grad-Cam++: “Generalized Gradient-Based Visual

Explanations For Deep Convolutional Networks”, Proceedings Of

Ieee Winter Conference On Applications Of Computer Vision
(Wacv'18), Mar 2018. [Arxiv]

12. R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, And

D. Batra, “Grad-Cam: Why Did You Say That? Visual Explanations
From Deep Networks Via Gradient-Based Localization,”

ArxivPreprint Arxiv:1610.02391 , 2016.

13. AsmelashTekaHadgu; Aastha Nigam ; Ernesto Diaz-Aviles, “Large-
scale learning with Adagrad on Spark, 2015 IEEE International

Conference on Big Data (Big Data), DOI:

10.1109/BigData.2015.7364091
14. Mahesh Chandra Mukkamala, Matthias Hein , “Variants of RmsProp

and Adagrad with Logarithmic Regret Bounds”, Proceedings of the

International Conference on Machine Learning, Sydney, Australia,
PMLR 70, 2017, arXiv:1706.05507v2[cs.LG]

15. Zijun Zhang, “Improved Adam Optimizer for Deep Neural

Networks”, 978-1-5386-2542-2/18/ ©2018 IEEE

16. KatarzynaJanocha, Wojciech Marian Czarnecki, “On Loss Functions

for Deep Neural Networks in Classification”, Theoretical foundations

of machine learning, Vol. 25 (2016): 49–59 doi:
10.4467/20838476SI.16.004.6185

17. NitishSrivastava, Geoffrey Hinton, Alex Krizhevsky, IlyaSutskever,

RuslanSalakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”, Journal of Machine Learning Research

15 (2014), 1929-1958
18. Vu Pham ; ThéodoreBluche ; Christopher Kermorvant ;

JérômeLouradour, “Dropout Improves Recurrent Neural Networks for

Handwriting Recognition”, 2014 IEEE 14th International Conference
on Frontiers in Handwriting Recognition, DOI:

10.1109/ICFHR.2014.55

19. Irwan Bello, BarretZoph, vijayvasudevan, QuocV.Le, “Neural
optimizer search with Reinforcement learning”, Proceedings of the

34th International Conference on Machine Learning , Sydney,

Australia, PMLR 70, 2017. Copyright 2017 by the author(s).

20. Mohaksrivatsava, s.pallavi, srijita Chandra, G.Geetha, “ Comparison

of optimizers implemented in generative adversarial network(GAN)”,

International journal of Pure and Applied mathematics, vol. 119, no
12, 2018.

http://www.ijrte.org/
https://www.superdatascience.com/deeplearning/
https://bhatsnotes.com/2016/12/23/artificial-intelligence-t-hub/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7569
https://doi.org/10.1109/ICDAR.2001.953958
https://www.iith.ac.in/~vineethnb/â€œhttp:/lanl.arxiv.org/abs/1710.11063â€�
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Asmelash%20Teka%20Hadgu.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Aastha%20Nigam.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ernesto%20Diaz-Aviles.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347101
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7347101
https://doi.org/10.1109/BigData.2015.7364091
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Vu%20Pham.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Th%C3%A9odore%20Bluche.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Christopher%20Kermorvant.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J%C3%A9r%C3%B4me%20Louradour.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6979380
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6979380
https://doi.org/10.1109/ICFHR.2014.55

