
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-5, January 2025

14

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125
DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

Abstract: In response to growing security concerns in software

development, this study introduces an open-access library

designed to enhance authentication systems using JSON Web

Tokens (JWT). This research addresses critical challenges in

integrating secure authentication mechanisms by developing a

new, scalable, user-friendly library focused on security and ease

of implementation. The library incorporates JWT rotation, Redis

integration, and customizable validation to ensure robust,

adaptable security for developers. Utilizing an agile, Extreme

Programming (XP) methodology, the library was iteratively tested

and optimized based on real-world developer feedback. The result

of the new library shows improved usability, flexibility, and token

management efficiency, demonstrating the effectiveness in

supporting secure authentication practices compared to the

state-of-the-art libraries. The new library is offering a practical,

open-source solution to strengthen authentication systems in

modern web applications, advancing the accessibility of secure,

reliable software development tools.

Keywords: Authentication, JSON Web Token, JWT,

Token-based Authentication, Open-Access Library.

I. INTRODUCTION

Authentication plays a critical role in modern software

applications, ensuring that users can only access authorized

resources. The use of JSON Web Tokens (JWT) for

authentication has gained popularity due to its stateless

nature and ability to securely carry user information [1]. JWT

is currently one of the most widely used token-based

authentication mechanism in global applications.

Despite the widespread acceptance of JWT, implementing

secure and user-friendly authentication mechanisms remains

a challenge for developers. The need for an open-source,

user-friendly security measure library for authentication

systems has emerged to streamline the integration of robust

authentication practices into various software applications.

This paper presents a new open-source, user friendly,

powerful Node.js - based secured library for handling user

Manuscript received on 31 October 2024 | First Revised

Manuscript received on 15 November 2024 | Second Revised

Manuscript received on 02 December 2024 | Manuscript

Accepted on 15 January 2025 | Manuscript published on 30

January 2025.
*Correspondence Author(s)

Ayodeji Ismail Moshood*, Department of Physics, Engineering and

Computer Science and University of Hertfordshire, Hatfield, UK. Email:
ayo.i.moshood@gmail.com, ORCID ID: 0009-0002-2724-8121

Zoe Jeffrey, Department of Physics, Engineering and Computer Science

and University of Hertfordshire, Hatfield, UK. Email:

z.j.jeffrey@herts.ac.uk, ORCID ID: 0000-0002-1755-1218

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

authentication and token management through JWTs.

II. RELATED WORK

Previous research on JWT-based authentication reveals

several challenges and solutions. For example, Bucko et al.

(2023) explored the use of two-step authentication based on

user behavior but faced penalties for mobile users with

changing IP addresses [2]. Varalakshmi et al. (2022)

proposed a dynamic secret key system for JWTs but

struggled with the scalability of token storage [3]. Ahmed

and Mahmood (2019) suggested using client and server-side

timestamps for improved security, though their solution

required frequent database lookups, which hampered

performance [4]. Haekal and Eliyani (2020) demonstrated the

implementation of JWTs in restful web services, focusing on

token-based authentication challenges within

service-oriented architectures [5]. The popular authentication

libraries Passport JS and OAuth 2.0 [6], provides software

developers with a secure system. However, the library is

complex with high level of configuration requirements for

customization [7].

While these approaches offer partial solutions, they often

sacrifice usability or scalability. This project builds on these

findings by focusing on creating a scalable, flexible JWT

solution that integrates seamlessly into existing systems,

while ensuring security and efficiency.

III. METHODOLOGY

This project follows an agile-based Extreme Programming

(XP) development process. The Methodology involves

iterative development with regular feedback cycles to ensure

that the library meets both security and usability

requirements [8].

Analysis: Challenges in existing JWT implementations

includes complexity in usability, customization limitations

due to predefined structures, and session-based defaults that

require manual token validation, making them less intuitive

for modern token-based authentication systems.

Design of the JWTAuthLib: The architecture of the library

focuses on flexibility, modularity, and ease of integration.

JWTs are used to manage user authentication, with Redis as

the token storage system. The system allows for secure token

rotation and blacklisting, ensuring that compromised tokens

can be revoked immediately.

Key Design Features Include:

▪ JWT Rotation: Tokens are periodically refreshed to limit

the lifespan of any potentially

compromised tokens.

▪ Redis Integration: Redis is

used for in-memory token

Ayodeji Ismail Moshood, Zoe Jeffrey

An In-Depth Approach to Strengthening Security

in Open-Access Libraries Utilizing JSON Web

Tokens (JWT)

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/
mailto:ayo.i.moshood@gmail.com,
https://orcid.org/0009-0002-2724-8121
mailto:z.j.jeffrey@herts.ac.uk
https://orcid.org/0000-0002-1755-1218
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.E8181.13050125&domain=www.ijrte.org

An In-Depth Approach to Strengthening Security in Open-Access Libraries Utilizing JSON Web Tokens (JWT)

15

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125

DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

storage, providing fast access and the ability to blacklist

tokens. Redis is an open-source, in-memory data structure

store used as a database, cache, and message broker known

for its high performance and scalability [7].

▪ Non-opinionated Flexibility: Developers can customize

validation logic without being locked into a specific

implementation pattern.

Implementation: The library was built in Node.js using

TypeScript with Redis, leveraging an industry-standard

library, as the session storage system. The implementation

includes secure token handling, automated token rotation,

and robust documentation to ensure ease of integration.

Testing: The library underwent several rounds of testing:

▪ Non-opinionated Flexibility: Developers can customize

validation logic without being locked into a specific

implementation pattern.

▪ Integration Tests: Validated successful and failed login

attempts, token generation, and token refresh workflows.

▪ Unit Tests: Focused on specific components of the

system, such as token validation and Redis-based token

management.

▪ End-to-end Tests: Simulated real-world usage to ensure

that the library could handle high traffic and large

volumes of token refresh requests without performance

degradation.

Library Architecture Design

The five major components of the authentication system are

Register, Access and Refresh Token, Login, Logout.

[Fig.1: Authenticated Request Flow]

A. Protected Route “Authenticated Request”

Valid Access JWT is a prerequisite for initiating an

Authenticated Request. The provided Access JWT in the

request undergoes a validation process. If the validation is

successful, the Access JWT allows access to protected

resources within the API server. Conversely, if the validation

fails, the caller (client) receives an unauthorized response.

The architectural layout of an authenticated request event is

shown in Figure 2 below.

[Fig.2: Protected Route “Authenticated Request”

Architecture Design]

B. Login

Prior to initiating an authenticated request within the

application, the user is required to log in by providing their

username and password. The login architecture is depicted in

Figure 3 below. Post credential verification, two JWTs

Access and Refresh JWTs are generated. Each JWT

incorporates a Unique Identifier (UUID) as a fundamental

component. The metadata of the JWTs comprises this UUID

and the user's authentication ID, constituting the request. This

metadata (UUID and userId) is then stored in cache storage

(Redis). Upon successful generation, the Access and Refresh

JWTs are provided to the requester, who has the flexibility to

opt for token storage methods such as an HTTP-only cookie

(recommended), local storage, among others.

[Fig.3: Login Route “Authenticated Request”

Architecture Design]

C. Access & Refresh JWTs

The intended design is for the Access JWT to have a brief

validity period, typically ranging from 5 to 15 minutes.

Conversely, the Refresh JWT is structured to possess an

extended validity span, usually falling within 1 to 7 days.

Whenever the Access JWT nears expiration, just prior to an

authenticated request, the Refresh JWTs come into play,

automatically initiating the creation of a fresh set of Access

and Refresh JWTs on the client side [9]. Axios Interceptors in

a JavaScript client application serve as a prime example of

this automatic trigger [10]. This project is specifically geared

towards presenting an API (Application Programming

Interface) endpoint, showcasing a manual trigger for

refreshing the Access and Refresh JWTs [11]. The

architecture for generating a new set of Access and Refresh

JWTs is shown in Figure 4 below [12].

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-5, January 2025

16

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125
DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

[Fig.4: Access and Refresh JWTs Architecture Design]

D. Logout

Following a successful login, users invalidate their JWT

tokens by themselves, which means they’ll either need to

manually logout or depending on the use case of the

application a user is logged in to [13]. For example, A

financial technology application, sets a limited time for JWT

to be invalidated if user is idle on the application.

One limitation of using JWTs is the lack of a mechanism

for users to invalidate a JWT as needed. This project tackles

this issue as one of its objectives [14].

As illustrated in the logout architecture depicted in Figure

5 below, a user has the ability to invalidate a JWT at their

discretion by removing the metadata, used to generate the

respective JWT, from the Redis cache. Following a logout

event, both the Access and Refresh JWTs become invalidated

and unusable for initiating any authenticated requests on

behalf of the user.

[Fig.5: Logout Architecture Design]

E. Caching Mechanism using Redis

Redis is an open-source in-memory data store that can

serve as an excellent caching mechanism (Redis, 2022) [6]. A

good feature of Redis is its document expiration feature,

which enables us to specify the time that each metadata will

expire, which is not possible if it were a traditional database

that is used. Redis stores the metadata (UUID and userId) of

the Access and Refresh JWTs. While the UUID is the key,

the userId is the value.

There are two scenarios where metadata is stored in Redis:

Login and Refresh JWTs operations. Each time an

authenticated request is performed, the JWT metadata stored

as part of the JWT claim is extracted and validated if it tallies

with the record in Redis.

During a logout operation, the metadata is deleted from

Redis, automatically invalidating the JWT.

[Fig.6: The Library Architecture User Flowchart]

The above figure demonstrates the flow chart of the different

Aspects of the authentication system, from when a user logs

in to when they make an authenticated request

IV. RESULTS AND DISCUSSION

The authentication library was subjected to a series of

rigorous tests to ensure that it met both the security standards

and the functional requirements. The following types of tests

were conducted:

▪ Integration Testing

Successful Login Test: The library was tested to ensure that

it correctly generates access and refresh tokens upon

successful login attempts. Testing scenarios included:

▪ Valid credentials returning a 200 OK status and

providing JWTs for further authenticated requests.

▪ Invalid credentials returning a 401 Unauthorized status.

▪ Token expiration and refresh functionality working

seamlessly through automated refresh mechanisms.

▪ Failure Login Test: Invalid credentials or malformed

requests consistently returned appropriate error

messages and status codes, with no sensitive

information exposed.

▪ JWT Refresh Mechanism

The refresh mechanism was evaluated under various

conditions. The refresh token was successfully rotated before

the expiration of the access token, minimizing the need for

frequent user re-authentication.

When a refresh token was invalidated (either by user logout

or token expiration), the library responded by requiring

re-authentication, preventing unauthorized access.

▪ Redis Caching:

Redis was used to store token metadata, improving the

efficiency of token validation. Redis automatically handles

token expiration, and the system performed well under high

traffic without causing performance

bottlenecks. In addition, the

integration of Redis improved

the response time when

managing blacklisted tokens

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/

An In-Depth Approach to Strengthening Security in Open-Access Libraries Utilizing JSON Web Tokens (JWT)

17

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125

DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

and allowed seamless token invalidation during logout

events.

A. Security Features

A key priority of the JWTAuthLib project was to ensure

security without sacrificing usability. The following features

were implemented and evaluated:

▪ JWT Rotation: The rotation of JWT tokens ensured

that even if a token was compromised, its lifespan was

limited to a short period, reducing the potential for

malicious use.

▪ Blacklisting Tokens: The library includes a token

blacklisting feature that invalidates tokens upon user

logout or suspicious activity. This feature was effective

in ensuring that no revoked tokens could be reused.

▪ Token Storage: The use of Redis for token storage

enabled secure and efficient handling of both access and

refresh tokens. Redis’ in-memory data store with

expiration functionality ensured that tokens were stored

temporarily, preventing excessive memory usage while

securing token data.

B. User Feedback

Developers reported positive feedback on the ease of

integrating the library into their applications, highlighting its

flexibility, customizability, and robust documentation. Some

suggestions for future improvements included dynamic token

expiration based on user activity.

C. Example Application and Ease of Integration

Scenario: A Web Application with Secure Authentication

▪ User Registration: A new user submits their details (e.g.,

email, password) to the registration route /auth/register.

The function useRegisterValidate() is used to validate the

input (e.g., checking if the email is unique). After

validation, the user’s data is stored in the database, and

jwt-auth-lib generates an access and refresh token.

▪ User Login: When a user logs in via /auth/login,

useLoginValidate() then checks if the email and password

are correct. Upon success, the library generates new

JWTs (access and refresh tokens).

▪ Token Management: Redis is used to store refresh tokens

securely, allowing efficient token validation and rotation

when the access token expires. The access token is

short-lived and used for securing APIs, while the refresh

token provides long-term authentication.

▪ Guarding Routes: Secure routes like /dashboard are

protected using the middleware authenticateJwt(),

ensuring only authenticated users can access them.

▪ Token Refresh: When the access token expires, the user

can use the refresh token via /auth/refresh to get a new

access token without logging in again.

[Fig.7: Example Library Application: User Sends Login

Details for Validation]

[Fig.8: Example Library Application: User Sends

Registration Details for Validation]

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-5, January 2025

18

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)

© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125
DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

D. Comparison with Other Solutions

Compared to alternatives like Passport.js and OAuth2,

JWTAuthLib offers a lightweight, flexible solution for

token-based authentication. Unlike Passport.js, it does not

enforce strict authentication strategies, and it is easier to

implement than OAuth2 in simple applications and refreshes

without slowing down the application. The library has been

published as an open-source through NPM and is available

freely to software developers to download on the following

link https://www.npmjs.com/package/jwt-auth-lib Currently

it has over 1200 users.

V. FUTURE WORK

Future works includes implementing enhanced built-in

validation to provide more robust default checks, such as

email formats, password strength, and unique user identifiers,

to reduce the need for manual work. Secondly, token

revocation improvements to allow for more granular control,

such as invalidating tokens upon password changes or user

deactivation. Expanding storage options beyond Redis, such

as in-memory or database storage, to offer more flexibility.

Improve performance to be optimized for large-scale

applications by improving asynchronous token handling,

leveraging better async/await processes. Additional

enhancement would involve integrating front-end

components to demonstrate how authentication systems

work. This would include designing intuitive UI elements for

login functionality using email, password inputs, and

keystrokes for accessibility. Such integration would provide

a user-friendly experience while ensuring secure

authentication, promoting inclusivity for users with diverse

needs. These front-end improvements will further align the

authentication system with modern usability and accessibility

standards, enhancing overall user interaction.

VI. CONCLUSION

JWTAuthLib effectively addresses the challenges of

building secure and user-friendly authentication systems

using JWTs. Its flexibility, combined with robust security

features such as token rotation and Redis-based token

management, making it an ideal solution for developers.

Future work includes expanding the library’s capabilities,

such as adding multi-factor authentication and OAuth2

support, to further enhance its usability.

ACKNOWLEDGMENT

I would like to express my gratitude to my supervisor, Dr.

Zoe Jeffrey, for her invaluable support throughout the

development of this project. Her guidance and feedback were

crucial to the success of this work.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the

accuracy of the following information as the article's author.

▪ Conflicts of Interest/ Competing Interests: Based on my

understanding, this article has no conflicts of interest.

▪ Funding Support: This article has not been sponsored or

funded by any organization or agency. The independence

of this research is a crucial factor in affirming its

impartiality, as it has been conducted without any external

sway.

▪ Ethical Approval and Consent to Participate: The data

provided in this article is exempt from the requirement for

ethical approval or participant consent.

▪ Data Access Statement and Material Availability: All

data and materials supporting the findings of this study are

available upon request. The JWTAuthLib library is

open-source and publicly accessible for download via

Node Package Manager (NPM) and GitHub, where the

source code, documentation, and issue tracking are

maintained.

▪ Authors Contributions: The authorship of this article is

contributed equally to all participating individuals.

REFERENCES

1. M. Jones, B. Campbell, C. Mortimore “JSON Web Token (JWT) Profile

for OAuth 2.0 Client Authentication and Authorization Grants,” RFC

7523, May 2015. DOI: https://doi.org/10.17487/RFC7523

2. A. Bucko, K. Vishi, B. Krasniqi and B. Rexha “Enhancing JWT

Authentication and Authorization in Web Applications Based on User

Behavior History” Computers, vol. 12, no. 4, pp. 1-15, 2023. DOI:

https://doi.org/10.3390/computers12040078

3. P. Varalakshmi, G. Bhuvaneswari, V. S. Praveena, D. Thomas, and S.

Kannan, “Improvising JSON Web Token Authentication in SDN,” 2022

International Conference on Communication, Computing and Internet

of Things (IC3IoT), 2022, pp. 1-8. DOI:

https://doi.org/10.1109/IC3IOT53935.2022.9767873.

4. S. Ahmed, and Q. Mahmood “An authentication-based scheme for

application using JSON Web token”, 2019 22nd International

Multitopic Conference (INMIC). pp. 11-15. DOI:

https://doi.org/10.1109/INMIC48123.2019.9022766

5. M. Haekal, and Eliyani “Token-based authentication using JSON Web

Token on SIKASIR RESTful Web Service,” 2016 International

Conference on Informatics and Computing (ICIC), 2016, pp. 175-179,

DOI: https://doi.org/10.1109/IAC.2016.7905711

6. D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749, Oct.

2012. DOI: https://doi.org/10.17487/RFC6749

7. M. Karlsson, “Analysis of the use of the Redis in the distributed order

processing system in the restaurant network,” Redis Labs, 2022. DOI:

https://doi.org/10.15587/2706-5448.2021.238460

8. C. J. Stettina, J. Garbajosa, and P. Kruchten, “Agile Processes in

Software Engineering and Extreme Programming: Proceedings of the

24th International Conference, XP 2023, Amsterdam, The

Netherlands,” Springer, 2023. DOI:

https://doi.org/10.1007/978-3-031-33976-9.

9. S. Dalimunthe, E. H. Putra, M. A. F. Ridha “Restful API Security Using

JSON Web Token (JWT) With HMAC-Sha512 Algorithm in Session

Management” 2023. DOI: https://dx.doi.org/10.25299/itjrd.2023.12029

10. Reddy, P. A., & Reddy, P. H. chandan. (2020). User Authentication and

Password Protection using an Algorithm ACR. In International Journal

of Innovative Technology and Exploring Engineering (Vol. 9, Issue 4,

pp. 3212–3215). Doi: https://doi.org/10.35940/ijitee.c8869.029420

11. Mahindrakar, P., & Pujeri, Dr. U. (2020). Insights of JSON Web Token.

In International Journal of Recent Technology and Engineering (IJRTE)

(Vol. 8, Issue 6, pp. 1707–1710). Doi:

https://doi.org/10.35940/ijrte.f7689.038620

12. Mahindrakar, P., & Pujeri, U. (2020). Security Implications for Json web

Token Used in MERN Stack for Developing E Commerce Web

Application. In International Journal of Engineering and Advanced

Technology (Vol. 10, Issue 1, pp. 39–45). Doi:

https://doi.org/10.35940/ijeat.a1663.1010120

13. Kumar, Dr. A., Bhatia, Dr. A., Mishra, Dr. A., & Gupta, T. (2024). A

Model Apporach for Identity and Access Management (IAM) System in

the Cloud. In International Journal of Soft Computing and Engineering

(Vol. 13, Issue 6, pp. 28–36). Doi:

https://doi.org/10.35940/ijsce.d3645.13060124

14. Dungarani, R., & Gujjar, Dr. S. N.

(2024). Intrusion Detection System

to Secure a Network using ACNN

Model and Machine Learning. In

International Journal of

Innovative Science and Modern

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/
https://www.npmjs.com/package/jwt-auth-lib
https://www.npmjs.com/package/jwt-auth-lib
https://doi.org/10.17487/RFC7523
https://doi.org/10.3390/computers12040078
https://doi.org/10.1109/IC3IOT53935.2022.9767873
https://doi.org/10.1109/INMIC48123.2019.9022766
https://doi.org/10.1109/IAC.2016.7905711
https://doi.org/10.17487/RFC6749
https://doi.org/10.15587/2706-5448.2021.238460
https://doi.org/10.1007/978-3-031-33976-9
https://dx.doi.org/10.25299/itjrd.2023.12029
https://doi.org/10.35940/ijitee.c8869.029420
https://doi.org/10.35940/ijrte.f7689.038620
https://doi.org/10.35940/ijeat.a1663.1010120
https://doi.org/10.35940/ijsce.d3645.13060124

An In-Depth Approach to Strengthening Security in Open-Access Libraries Utilizing JSON Web Tokens (JWT)

19

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte.E818113050125

DOI: 10.35940/ijrte.E8181.13050125
Journal Website: www.ijrte.org

Engineering (Vol. 12, Issue 6, pp. 1–5). Doi:

https://doi.org/10.35940/ijisme.g1319.12060624

AUTHORS PROFILE

Ayodeji Ismail Moshood is an MSc Software

Engineering graduate from the University of
Hertfordshire. His research focuses on open-source

software development, security systems, and

authentication mechanisms. Ayodeji has experience in
developing software solutions for various industries and

peris passionate about improving user experience and
security in digital platforms.

Zoe Jeffrey, PhD is a principal lecturer at the University
of Hertfordshire. In the School of Physics, Engineering

and Computer Science. Her research interest is in the

area of software and hardware SoC customization and
optimization, signal processing algorithms and AI and

machine learning. Her recent work includes software

development, embedding AI for data matrix decoding and the use of

barcodes in biosample management.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://doi.org/10.35940/ijrte.E8181.13050125
http://www.ijrte.org/
https://doi.org/10.35940/ijisme.g1319.12060624

