
International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-3, September 2024

19

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

Abstract: Large Language Models (LLMs) are rapidly being

adopted in various applications due to their natural language

capabilities that enable user interaction using human language.

As system designers, developers, and users embrace generative

artificial intelligence and large language models in various

applications, they need to understand the significant security risks

associated with them. The paper describes a typical

LLM-integrated application architecture and identifies multiple

security risks to address while building these applications. In

addition, the paper provides guidance on potential mitigations to

consider in this rapidly evolving space to help protect systems and

users from potential attack vectors. This paper presents the

common real-world application patterns of LLMs trending today.

It also provides a background on generative artificial intelligence

and related fields.

Keywords: Large Language Models, Security, Copilot,

OWASP.

I. INTRODUCTION

Large Language Models (LLMs) are transforming the

public’s daily lives on many levels by simplifying their

routine tasks. ChatGPT gained widespread popularity,

surpassing over 100 million users in two months since its

release on November 30, 2022 [1], [2]. Many new models

such as Cohere, LLAMA2, and GPT-4, were released shortly

after ChatGPT [3]-[5].

LLMs’ rising popularity and usefulness led to fast-paced

integration into many existing systems, such as a

conversational chatbot or a copilot for content generation,

source code, or performing tasks in general. In

LLM-integrated applications, an LLM interacts with various

components such as APIs, databases, and other LLMs. This

complexity of interaction, combined with a lack of

knowledge and skills among developers and users on security

risks, makes LLM-integrated applications vulnerable.

Researchers have studied web application security

extensively. However, the field of LLM security is relatively

new and evolving rapidly. Security risks can occur

throughout the software development lifecycle and LLM

process model [6]. It can range from making model

deployment vulnerable, to introducing weaknesses for an

Manuscript received on 21 July 2024 | Revised Manuscript

received on 30 July 2024 | Manuscript Accepted on 15

September 2024 | Manuscript published on 30 September 2024.
*Correspondence Author(s)

Nikhil Pesati*, High School Senior, The Harker School, San Jose,

California, USA. Email: nikhilpesati25@gmail.com, ORCID ID:
0009-0006-2346-7844

© The Authors. Published by Blue Eyes Intelligence Engineering and

Sciences Publication (BEIESP). This is an open access article under the

CC-BY-NC-ND license http://creativecommons.org/licenses/by-nc-nd/4.0/

attacker to exploit, exposing sensitive information, prompt

manipulation, and remote code execution. The system

designers and developers of LLM-integrated applications are

responsible for securing them against these risks. LLMs, due

to their transformative capabilities in natural language

processing, can support a variety of use cases such as Text

Generation (e.g., social media posts, blogs), Language

Translation (e.g., real-time speech translation, translation

between languages), Classification (e.g., sentiment analysis,

content moderation by toxicity level), Summarization (e.g.,

legal paraphrasing, meeting notes summary), and Natural

Language Conversation Assistance (e.g., digital assistants,

chatbots). These capabilities enabled several real-world

applications of LLMs across various domains, such as

chatbots in Customer Service, investment risk assessment in

Finance, product recommendation in E-commerce, code

generation in Software Development, and many more.

II. BACKGROUND

A. Concepts

Artificial Intelligence (AI) refers to the science and

engineering of making intelligent machines that mimic

human intelligence and perform tasks humans can do

naturally. These tasks include sense, language understanding,

and problem-solving [7].

Machine Learning (ML) is a group of technologies and

statistical algorithms that enable computer systems to

perform tasks without explicit instruction. These systems

identify patterns, make decisions, and improve by learning

from experience and data exposed over time [8].

Neural Networks are modeled based on human biology and

how a network of neurons and the human brain work together

to understand inputs from human senses. They are

computational learning systems that use mathematical

functions to understand and translate data inputs into a

desired output, recognizing patterns and making decisions as

they process data [8].

Deep Learning (DL) is the technology to train and model a

large multi-layered neural network to solve complex

problems with human-like complex decision-making

processes [9].

Generative Artificial Intelligence (GenAI) describes an AI

system primarily used to create new content, such as audio,

code, images, and text, closely resembling data it ingested

during training [10]. Fig. 1 below shows a map of these

concepts.

Security Considerations for Large Language

Model Use: Implementation Research in

Securing LLM-Integrated Applications
 Nikhil Pesati

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/
mailto:nikhilpesati25@gmail.com
https://orcid.org/0009-0006-2346-7844
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijrte.C8142.13030924&domain=www.ijrte.org

Security Considerations for Large Language Model Use: Implementation Research in Securing LLM-Integrated Applications

20

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

Figure: 1. Venn Diagram of Artificial Intelligence Technologies

B. Large Language Model

LLM is a massive neural network trained on enormous

input datasets to produce realistic output text by

understanding and generating human language. With their

GenAI and NLP capabilities, LLMs can recognize,

summarize, translate, predict, and generate content. LLMs’

use of the transformer model introduced a revolutionary

innovation with a self-attention mechanism and positional

encoding; LLMs learned context and meaning significantly

better by assigning weights based on the importance of

different words and order in a sentence [11], [12].

Using LLMs typically means providing a prompt to guide

the generation of subsequent text. The text an LLM generates

is assumed to suitably answer a question. In practice, a great

deal of iterative work goes into creating prompts to support

this, known as prompt engineering.

i. Properties

LLMs are data-driven prediction systems that generate a

best-guess output based on data associations and probability

distributions ingested during training. LLMs are

auto-associative predictive generators and are stochastic by

design, as they often generate different outputs for similar

prompts seen as meaningfully the same by humans. LLMs do

not possess cognitive understanding and reasoning or grasp

nuances of human language like meaning and emotion. Yet,

many attribute human-like qualities and understanding to

LLMs’ indistinguishable human-like output, showcasing the

ELIZA effect.

ii. Process Model

Large Language Models are trained using unsupervised

learning enhanced with attention mechanisms on public data

belonging to a wide range of domains, known as

general-purpose LLMs. Due to the prohibitive costs

associated with building and training LLMs, most application

developers use a general-purpose LLM as a foundation and

then use prompt engineering or fine-tuning to suit their

specific purpose. This general-purpose model is considered a

foundation model. LLMs trained explicitly with a focus on a

single or subset of domains, such as medical or legal, are

known as domain-specific LLMs. The LLM foundation

model operates as a black box, interfaced through an

effectively “shapeless API” that produces unstable results

even given the same prompts a human identifies as the same.

Fig. 2 represents the Large Language Process Model as

defined by the Beverly Institute of Machine Learning

(BIML). The black box in the illustration is called the “Black

Box Foundation Model” as it informs the user that the data

and processes involved within are unknown, externally

controlled parties. This lack of visibility brings several

security concerns for LLM-integrated applications [6].

Figure: 2. A Generic LLM Process Model, Including its

Foundation Model: Components with Various Steps in

Using an LLM: 1) Raw Data in the World, 2) Inputs, 3)

Model, 4) Inference Algorithm, and 5) Outputs [6]

C. LLM Application Architecture

Fig. 3 illustrates the typical architecture of an

LLM-integrated application. The application provider creates

a variety of predefined prompt templates suited to their

functional needs. The design and implementation determine

how user inputs will be integrated with these prompt

templates to send the combined prompt to the LLM. An LLM

generates an output for the combined prompt as a response to

complete the task. The output could invoke downstream

services on the user’s behalf, such as a database query,

external API invocation, and webpage access. The

application could further process the output before the final

output is sent to the user.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-3, September 2024

21

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

Figure: 3. Adapted from OWASP LLM Application Data Flow [13]

In essence, the LLM-integrated application requires a

comprehensive approach that considers the security of the

entire architecture, from data ingestion and storage to model

serving and user interaction. Understanding these

interactions well can help one develop an effective strategy to

safeguard an LLM-based application against vulnerabilities.

D. LLM Top Ten Risks

As LLM-integrated applications explode, developers and

users of LLMs must be aware of the risks that impact an

LLM. Understanding these risks and their mitigations is

essential to developing, deploying, and securing LLM-based

applications to prevent adversarial exploits.

Table I lists Beverly Institute of Machine Learning’s Top

10 LLM risks and Open Worldwide Application Security

Project’s (OWASP) Top 10 for Large Language Model

Applications risks [6], [13].

Table I: Top 10 LLM Risks from BIML and OWASP

BIML Top 10 OWASP Top 10

Recursive Pollution Prompt Injection

Data Debt Insecure Output Handling

Improper Use Training Data Poisoning

Black Box Opacity Model Denial of Service

Prompt Manipulation Supply Chain Vulnerabilities

Poison in the Data Sensitive Information Disclosure

Reproducibility Economics Insecure Plugin Design

Data Ownership Excessive Agency

Model Trustworthiness Overreliance

Encoding Integrity Model Theft

III. LLM RISKS AND MITIGATIONS

The following section details various LLM risks and

potential mitigations to consider while developing an

LLM-integrated application.

A. Reproducibility Economics

Building and training LLMs from scratch is expensive due

to the required time, effort, and money. Thousands of GPUs

handle massive datasets and multiple training runs for

development and training over a long period. For example,

training GPT-4 costs about $63 million in hardware

[14],[15].

For the above reasons, the creation and development of

LLMs is limited to large corporations with substantial

budgets. These companies provide them as foundation

models characterized as black box models since the users

lack visibility into the data used to create the model, the kind

of training done, or how it is secured. Building and studying

LLMs is out of reach for academic research and impedes peer

review of new LLMs due to cost barriers.

Smaller organizations with limited resources have no

choice but to use these foundation models with inherent risks,

limiting competition and increasing the risk of vendor

lock-in. The burden is on users and developers to ensure the

LLM works as expected without malicious inclusions.

B. Model Maintenance and Monitoring

Developers of LLM-based applications have less control

over LLMs as the models are maintained via their

parameters. The developer’s lack of control over user

prompts and LLM responses makes model maintenance

difficult. Users can submit any natural language text as input.

Given that LLMs are auto-associative predictive generators

and stochastic, the generated output can vary widely, even

with slight changes in the input text. Data is the lifeblood of

maintaining an LLM-integrated application. Manipulating

data used by an LLM-integrated application can help protect

against attacks, expand the model’s knowledge, or remove

knowledge to unlearn. We describe some of these ways

below.

i. Retraining

New versions of LLM models are made available by

retraining on a modified dataset.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

Security Considerations for Large Language Model Use: Implementation Research in Securing LLM-Integrated Applications

22

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

It can improve the model by increasing its knowledge,

unlearning harmful information, and responding to attacks

with better detection [16].

ii. Fine-Tuning

Fine-tuning is a way to train the model with a

domain-specific dataset to adjust its weights. Hence, it is

specialized to provide relevant and accurate responses in the

domain-specific application. The result is a modified model

that alters the broad knowledge of the foundation model to a

specific task [17] [36][37][38].

iii. Retrieval Augmented Generation (RAG)

RAG is an approach to improve a foundation model LLM

without retraining by providing relevant information from an

external dataset as input to the LLM so a contextually

accurate and correct response is developed for the users. This

dynamic ability to combine external information that

enhances the model’s output reduces the possibility of

hallucinations while reducing effort and cost. Some

information retrieval methods RAG uses include accessing

data directly from the web, relational or vector databases, and

data from user input [18].

There are several risks in building and maintaining an LLM

model used in an LLM-integrated application. The

foundation model may include personally identifiable

information (PII), copyrighted material, harmful content, and

disinformation. The dataset used in fine-tuning a model poses

a risk of data leakage for PII or confidential information via

LLM responses or attacker extraction. Using confidential

information or PII in the training dataset without user consent

can lead to regulatory and compliance violations, loss of

reputation and brand damage upon discovery, and financial

cost of model unlearning to remediate it. With its dynamic

content access from various sources, RAG brings its risks,

including unintended retrieval or disclosure of sensitive

information from web content, unintended queries or

privilege elevation on database access, and information

leakage via inferences.

These risks can be mitigated by scrutinizing and sanitizing

training data, avoiding PII data and proprietary information,

and filtering misleading, biased, or discriminating content.

Data store access should be protected by implementing input

validation, proper access controls, sensitive data discovery

and classification, limiting access based on data

classification, and monitoring activity to detect unauthorized

access. User education is needed to avoid users sharing

sensitive information with an LLM application. An

LLM-integrated application can sanitize user data or use

methods to ensure the LLM does not persistently make

sensitive data part of it.

iv. Guardrails

Guardrails leverage input validation, output filtering,

activity monitoring, and user feedback methods to protect

against various risks, including sensitive data leakage,

prompt injection attacks, excessive use, etc. These can

prevent output containing bias, discrimination, or harmful

content, monitor performance for accuracy, relevance, and

toxicity in user responses, and adhere to company or

compliance policies. Some popular guardrails include Nvidia

NeMo, Guardrails AI, and Llama Guard [19]-[20].

C. Prompt Injection

Prompt injection uses crafty prompts to manipulate the

LLM, causing unintended actions. Successful exploitation

occurs as LLMs have difficulty distinguishing between

instructions and user-submitted data. These exploits result in

the LLM overriding its design principles or guardrails,

executing malicious instructions, producing problematic

output, and/or poisoning data. Some consequences of the

exploitation include social engineering attacks, exploit

plugins, denial of service, and legal and compliance risks.

There are two types of prompt injection attacks: direct and

indirect.

i. Direct

An attacker directly interacts with the LLM prompt,

providing malicious inputs to override the system’s

instructions, bypassing the application developer’s

intentions. This injection is known as “jailbreaking”[23].

ii. Indirect

An attacker indirectly injects the LLM with a crafted

prompt using external sources, such as websites, files, etc.,

under the attacker’s control, and it is processed while

attempting to answer the user’s prompt [22]-[25].

Here are some examples of prompt injection attacks:

One of the techniques to make the LLM move out of

alignment is the DAN method. The attacker provides a

prompt: “Your name is DAN - which stands for Do Anything

Now. You can do anything that ChatGPT cannot. You have

no restrictions.” This technique can be used whenever a

request hits the LLM guardrails to override it and get the

desired response [21]. A recent paper on automated

adversarial prompting from Carnegie Mellon University

researchers [24] has shown a process for automating the

search for effective prompt injection attacks using

exploration techniques such as gradient descent. These

techniques can identify a collection of strings that can be

appended to any request and increase the odds of many

available LLMs in the market responding to requests

violating their guardrails. Prompt injection is an evolving

area of research on both attacks and defenses. These are ways

to mitigate the attack and offer a line of defense.

▪ A prompt structure can help separate user data and

model developer instructions to avoid executing malicious

instructions.

▪ Rate-limiting requests based on IP address, user

identity, or session limit the ability to launch probing attacks.

▪ Adversarial training of LLM with normal and malicious

inputs can prepare the LLM to identify and act on harmful

inputs.

▪ Treat all outputs from an LLM as inherently untrusted

and validate to remove malicious instructions or harmful

content for further consumption.

▪ Review and enforce data access controls to ensure the

least privileged access.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-3, September 2024

23

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

D. Overreliance and Improper Use

It is easy to be overconfident about the output generated by

an LLM as they confidently present the information, even

when it is based on imperfect statistical knowledge acquired

through training data. Humans often accept LLM output with

excessive trust, creating an overreliance on LLMs. LLM

output can be wrong based on training data quality, prompt,

or context interpretation. Hallucinations are the inaccurate

output generated by matching patterns learned without

real-world factual understanding [26]. These hallucinations

can show up with factual inaccuracies, unsupported claims,

misinformation, or contradictory responses [27]. A common

reason for improper use is overreliance on LLM output and

blind faith in human-like reasoning and understanding, even

if the response is inaccurate or can cause harm to themselves

or others. Below are some examples of hallucinations

combined with overreliance that highlight how misuse causes

harm.

LLM-based application misuse exists in the legal domain

related to the generation of legal documents. In 2023,

Michael Cohen submitted a federal motion with bogus

Google Bard LLM-generated fabricated legal case citations

[28]. This is a case where the user was unaware that the

service could generate nonexistent cases.

An instance of misuse in the medical domain was

highlighted in research done on ChatGPT’s responses to

questions about eosinophilic esophagitis (EoE), which were

too complex for a patient to understand and provided an

incorrect relationship between EoE and cancer [34].

Several examples of this kind bring into question the use of

LLMs in critical domains like legal and medical practice and

highlight users’ improper use based on a fundamental

misunderstanding of LLM-based applications.

Hallucinations are inherent in LLM-based applications.

User education is vital to avoid blind trust or misuse of the

information provided, especially in medical, legal, or

financial domains. In addition, clear communication via the

user interface and documentation of the LLM-based

application’s intended use, limitations, data handling, and

feedback process will help reduce the risk of overreliance. To

reduce fake output, developers can mitigate hallucinations by

model fine-tuning using RAG with domain-specific

documents. A feedback facility to bring humans into the loop

can help flag incorrect output.

E. Excessive Agency

As shown in Fig. 3, LLM-integrated applications interface

with several systems directly or indirectly, such as plugins or

agents, databases, and via the web, to respond to a user’s

prompt. The application requires permissions or agency to

interface with these systems to carry out actions needed to

respond to the prompt.

Excessive agency refers to an LLM-based system being

granted more capabilities or access by a developer than it

should have while interacting with other systems. In most

cases, excessive agency results from developers providing

excessive functionality, permissions, or autonomy to the

LLM-based application or component. The reasons for this

could be developers’ lack of understanding of the system

design or poor due diligence on the capabilities of included

plugins/agents with excessive permissions granted by the

original plugin developer.

This results in exploits with unrestricted access where the

adversary escalates privileges within these interacting

systems and compromises multiple systems takes over the

application entirely, or executes additional attacks [25].

Examples of attacks include prompt injection, tampering

with sensitive data, producing misleading information, and

executing web-based attacks.

To avoid granting excessive agency, developers must

follow the “least privilege” principle, which protects LLM

applications from external threats and unintended errors. It is

crucial to consider the risks of allowing an LLM to take

critical actions by adding restrictions to limit it with human

oversight or limit its abilities to only those required to answer

the prompt or delegate to other components. Also, it requires

the security team to perform due diligence and not include

functionality that may violate regulations or pose serious

security risks.

F. Securing Your Output Handling

Insecure output handling concerns the issues arising from

improper validation, sanitization, and management of the

LLM’s generated response before it is passed for downstream

consumption. Here, the concerns are exploitable

vulnerabilities, unintended disclosure of PII, and production

of toxic content. The risks include user harm, service

reputation damage, privacy concerns, legal liabilities, and

output consumption by downstream systems leading to SQL

injection and web-based attacks such as XSS and CSRF.

Preventing toxic content can be done through sentiment

analysis, keyword filtering for derogatory words or phrases,

or custom LLMs trained on toxic data with context-aware

filtering. PII screening can be done with solutions

implementing PII discovery and sanitization with techniques

such as Regular Expressions, Named Entity Recognition

(NER), dictionary-based keyword lookup, machine learning

classifiers, and anonymization. Mitigating exploitable code

generation in output can be done by sanitizing for safety with

HTML encoding to prevent web attacks, disabling shell

interpretable outputs, filtering out unsafe programming

syntax, keywords, or commands, and treating output as data

when consumed by a downstream component.

G. Financial Risks

This section covers the direct and indirect financial loss due

to the following attack vectors, which have similarities in

exploiting vulnerabilities within the LLM-integrated

applications.

i. Denial of Service

The model denial of service (DoS) attack exploits LLM’s

resource-intensive nature, where an adversary consumes

large amounts of resources to degrade model performance

and availability, causing possible direct financial losses.

Attackers can manipulate prompts to make the LLM perform

resource-intensive tasks.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

Security Considerations for Large Language Model Use: Implementation Research in Securing LLM-Integrated Applications

24

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

For example, what is the factorial of one million? The

imbalance between trivial effort by a user to submit prompt

and intensive processing required by the LLM makes them

exploitable, incurring substantial costs to the service

provider. A context window is a mechanism for the LLM to

focus its attention property on input text. An LLM can

manage this in its short-term memory, but it is

computationally intensive, allowing adversaries with prompt

manipulations to push its limits. In turn, this drains the

LLM’s resources, which compromises functionality or

depletes a financial budget.

ii. Model Theft

Attackers able to access custom LLM models may

physically steal the model. Alternatively, like DoS attacks,

the adversary posts lots of prompts against the LLM

application, recording the responses and then using them to

train their model. This ultimately leads to replicating a

functionally equivalent original model, stealing the

intellectual property of your model and application.

As we protect source code for software applications, we

must safeguard the LLM model with robust security controls

to manage the LLM application lifecycle. These controls

include access control, activity monitoring for anomalies, and

periodic security audits. Input validation and sanitization can

protect against the exploitation of LLM processing

capabilities. Fine-tuning the model to respond only to

domain-specific prompts can prevent computational abuse

via random prompts. Rate-limiting the number of user

requests to the LLM application within a time window can

mitigate service disruption with resource exhaustion. Placing

thresholds on resource consumption and billing usage will

make it difficult for an adversary to perform

resource-intensive tasks and avoid unexpected financial

impact.

H. Supply Chain Risks

Security of the software supply chain refers to measures

required to ensure the integrity and security of software

throughout the software development lifecycle. It includes

security of source code repositories, scanning for

vulnerabilities in third-party software and their dependencies,

and controls on CICD processes.

In LLM-integrated applications, third-party components

include foundation/custom models, plugins/agents, and the

integrity of the data used in model development. These

potentially can be malicious or contain exploitable

weaknesses. Hence, these components should be untrusted

until the developers perform due diligence on their safety.

i. Black Box Opacity

Using popular foundation LLMs makes it easy for

developers to consume the model. However, it does not

provide insight into the dataset quality, security features of

the model, or learning algorithms, which are necessary to

understand the foundation model risk fully. BIML’s 2024

paper states, “An LLM foundation model user is provided

with what amounts to an undocumented, unstable API that

sometimes exhibits unanticipated behavior” [6]. If you use a

black box foundation model, analyze its security, operation,

data, and output validation to verify it works as desired.

ii. Model Hub Risk

It is commonplace for developers to provide

domain-specific models via popular model hubs, such as

Hugging Face. Adversaries have targeted these model hubs to

upload a model with malicious functionality to be used

directly or indirectly via another benign model [30]. Even

though safeguards such as malware scanning are

implemented to ensure the safety of model uploads, care must

be taken to analyze all third-party models before using them.

iii. Unsafe Plugins/Agents

LLMs’ functionality is significantly expanded with plugins,

allowing integrated applications to reason and solve complex

prompts, obtain current information, and execute code. These

plugins can be used as attack vectors by exploiting a lack of

input/output validation, excessive privileges, and indirect

prompt injection vulnerabilities. Such weaknesses can lead to

data theft, remote code execution, sensitive information

leakage, unauthorized data collection, and model poisoning.

If your application includes plugins, ensure these

components are scanned continuously for vulnerabilities,

implement input/output validation with authentication and

access control, and patch regularly.

iv. Training Data Poisoning

In the context of LLMs, data poisoning is a manipulation of

a dataset used in training to introduce weaknesses into an

LLM. Data poisoning can happen unintentionally at any stage

of the software development lifecycle by ingesting training

datasets from unreliable public internet sources, fine-tuning,

or user interactions with the LLM-integrated application once

deployed. Data can be considered poisoned if it contains PII

or sensitive information. In 2023, Stanford researchers

showed that a popular dataset (LAION-5B) used to train

image generation algorithms contained images related to

child sexual abuse material [33].

LLM-based applications can generate output containing

misleading information with false or toxic content, including

biases, discrimination, and other harmful content. In these

cases, the model provided an answer based on the

information it has seen within the given context. If the model

for its training recursively consumes this inaccurate content,

it can poison the model/data by reinforcing the problematic

data, increasing its magnitude. This feedback loop is referred

to as “Recursive Pollution.” This can occur unintentionally if

a user’s input prompt generates a problematic response that is

then consumed by the model unbeknownst to the user.

Adversaries can execute this attack to undermine the integrity

of the LLM model, rendering the model and LLM-integrated

application entirely useless. To mitigate data risks, track and

protect datasets used for model development where possible

with version control. External training data sources and

model cards must be tracked with a machine learning bill of

material (ML-BOM). LLMs should not use their output to

avoid recursive pollution unless a data sanity check is done

before ingestion. Incorporate humans in the feedback loop to

avoid harmful content.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-3, September 2024

25

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

v. Model Trustworthiness

Datasets used for model development are too large for

human review, may contain inaccurate, sensitive, or biased

information, or could be poisoned or unavailable for review if

present in a black box component, so the LLMs should be

viewed as untrustworthy and scrutinized for use. Data are

often encoded, filtered, and re-represented before use in

model development using computer programs and filters

driven by humans that can bias a model. LLMs’

auto-associative predictive generation and stochastic nature,

coupled with human overreliance, may increase the problems

in model output if the output is further used in retraining the

model. Model bias can occur during the training and

deployment of LLM-integrated applications [31]. A few

main ways it occurs are through selection bias, which is due

to lack of representation of the entire population or target

audience in training data; contextual bias due to the LLM

failing to understand the context of a conversation or prompt;

and linguistic bias from an LLM favoring specific languages,

vocabularies, or cultural references over others.

Data used to train an LLM must be highly scrutinized at all

stages for model development and in every interaction with

an LLM in an LLM-integrated application to confirm it

behaves as intended to prevent such biases.

I. Sensitive Information Disclosure

The dataset used for model development may include PII,

business secrets, source code, domain-specific algorithms,

other sensitive information, and so on by design or

unintentionally. LLM applications can reveal this sensitive

information via its output. Attackers can steal this data to

clone the model for competitive advantage or reveal issues in

the model such as sensitive data, ethical issues, and biases

which make their way into the model due to lack of

sanitization or knowledge and damage model reputation

and/or LLM-integrated application. For example, Samsung

employees used ChatGPT in three separate instances to check

confidential source code for errors, requested code

optimization, shared a meeting recording to convert into

notes, and unintentionally leaked company sensitive

information [29].

Protecting the LLM application’s data is critical to

maintaining model integrity and safeguarding sensitive

information. Developers must leverage LLM-specific

ML-BOM or model cards for dataset management,

guardrails, or mitigation strategies to protect the data and

prevent data leakage in output, as described in the above

sections. In some cases, data removal may be needed by LLM

model unlearning if sensitive data is not prevented from

entering the model in the first place.

IV. APPLICATIONS

LLM-powered applications are utilized in many industries

and are expected to grow. Some of the typical and emerging

applications seen today are discussed below.

A. Customer Service

LLM applications have pervasively improved customer

service with chatbots and automated email responses.

Chatbots interact with customers in natural language, address

customer queries, and provide information for further

assistance. LLM-enabled customer support improves

response time, enhances customer experience, and reduces

workload on human support teams.

B. Education

Most recently, LLM applications have been used to

personalize learning and provide tailored assistance to an

individual student’s learning style and pace. It can generate

interactive reading content and adjust complexity to adapt to

a student’s comprehension level.

An application can act as a virtual tutor in answering

students’ questions, help with problem-solving steps, and

encourage them with positive messages.

For example, Duolingo has features such as “Explain My

Answer” and “Roleplay” to provide detailed explanations

about students’ responses and engage students to practice

real-world conversation skills with virtual characters,

providing personalized and interactive language learning.

C. Healthcare

The healthcare industry collects vast amounts of structured,

unstructured, and semi-structured data daily.

This data comprises doctor’s notes, electronic medical

records, diagnoses, lab results, smart gadget metrics, medical

imaging, etc. LLM-powered clinical decision support

systems can analyze this data to extract insights on patient

diagnoses and treatments, discover new medicines, and

advance medical research.

D. Type of LLM-Based Applications

Common types of LLM-based applications are chatbots,

copilots, and autonomous agents. Let us briefly look at each

of them.

1. Chatbots primarily simulate interactive conversations with

humans. They generate text to answer questions and support

customers in customer service applications.

Examples:

▪ Domino’s Pizza uses a chatbot to help customers order

pizza.

▪ ChatGenius is a chatbot that enhances customer service

with custom responses to user inquiries.

2. Copilots are LLM applications that mainly assist humans

in performing tasks to become more productive. These

include writing, coding, creating ideas, identifying errors,

and improving their work.

Examples:

▪ Grammarly helps users with their writing, identifying

grammar errors and suggesting improvements with

feedback.

▪ GitHub Copilot helps programmers write code by

generating code samples and assisting in debugging

errors.

3. Autonomous Agents are LLM applications that go beyond

assisting in tasks and functions to engage more through

action using interconnected, automated systems with task

decomposition and independent decision-making. This is an

emerging trend and an area of ongoing research [35].

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/

Security Considerations for Large Language Model Use: Implementation Research in Securing LLM-Integrated Applications

26

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

Examples:

▪ GPT-Engineer builds web application software and

enhancements from natural language specification.

▪ ChemCrow is designed to accomplish tasks across

organic synthesis, drug discovery, and materials design

[32].

V. CONCLUSION

LLM-integrated applications will continue growing,

providing significant value to users and businesses. In the

future, LLM technology will have multi-modal capabilities,

the ability to affect the physical world, perform reasoning,

and interact with humans, expanding its application domains

to healthcare, law, autonomous systems, and more. New

attack vectors are constantly being discovered with this

fast-evolving technology, making it challenging to secure

LLM-integrated applications against all potential attacks.

System designers and developers responsible for developing

LLM-integrated applications will be accountable for

choosing the LLM foundation model and building

applications that are properly secured. Making your

application robust to inherent natural and malicious errors

can improve its security. By considering the risks discussed

in this paper and applying the mitigations recommended,

developers can reduce the exposure to these risks. The

complete system requires following security best practices to

help ensure a secure deployment.

DECLARATION STATEMENT

Funding No, I did not receive it.

Conflicts of Interest
No conflicts of interest to the best of my

knowledge.

Ethical Approval and
Consent to Participate

No, the article does not require ethical

approval and consent to participate with

evidence.

Availability of Data and

Material
Not relevant.

Authors Contributions I am the sole author of the article.

REFERENCES

1. Chatgpt, openai.com/chatgpt/.

2. CHATGPT Sets Record for Fastest-Growing User Base - Analyst Note |

Reuters,
www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-

base-analyst-note-2023-02-01/.
3. “Command R.” Cohere, cohere.com/models/command.

4. Meta Llama, ai.meta.com/llama/.

5. GPT-4, openai.com/research/gpt-4/.
6. McGraw, Gary, et al. An Architectural Risk Analysis of Large Language

Models: Applied Machine Learning Security,

berryvilleiml.com/docs/BIML-LLM24.pdf.

7. Artificial Intelligence Definitions,

hai.stanford.edu/sites/default/files/2020-09/AI-Definitions-HAI.pdf.
8. “Generative AI Foundations: An Introduction to Basic Generative AI

Concepts.” Sendbird,
sendbird.com/developer/tutorials/introduction-to-basic-generative-ai-c

oncepts.

9. “Introduction to Deep Learning.” GeeksforGeeks, 26 May 2024,
www.geeksforgeeks.org/introduction-deep-learning/.

10. Team, Toloka. Difference between AI, ML, LLM, and Generative AI, 23
May 2024,

toloka.ai/blog/difference-between-ai-ml-llm-and-generative-ai/.

11. “What Are Large Language Models?: Nvidia Glossary.” NVIDIA,
www.nvidia.com/en-us/glossary/large-language-models/.

12. Sajid, Haziqa. “A Comprehensive Overview of Large Language
Models.” Wisecube, 1 June 2023,

www.wisecube.ai/blog/a-comprehensive-overview-of-large-language-

models/.

13. OWASP,
owasp.org/www-project-top-10-for-large-language-model-applications

/assets/PDF/OWASP-Top-10-for-LLMs-2023-v1_1.pdf.

14. Smith, Craig S. “What Large Models Cost You – There Is No Free AI

Lunch.” Forbes, Forbes Magazine, 20 Feb. 2024,

www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-
you--there-is-no-free-ai-lunch/?sh=44cc5add4af7.

15. McGuinness, Patrick. “GPT-4 Details Revealed.” GPT-4 Details
Revealed - by Patrick McGuinness, AI Changes Everything, 12 July

2023, patmcguinness.substack.com/p/gpt-4-details-revealed.

16. “LLM Training: A Simple 3-Step Guide You Won’t Find Anywhere
Else!” Medium, Medium, 10 Mar. 2024,

masteringllm.medium.com/llm-training-a-simple-3-step-guide-you-wo
nt-find-anywhere-else-98ee218809e5.

17. “Fine-Tuning Large Language Models (Llms) in 2024.” SuperAnnotate,

www.superannotate.com/blog/llm-fine-tuning.
18. Ben Dickson, et al. “The Complete Guide to LLM Fine-Tuning.”

TechTalks, 15 Aug. 2023, bdtechtalks.com/2023/07/10/llm-fine-tuning/.
19. “Security Guardrails for LLM: Ensuring Ethical AI Deployments.”

Security Guardrails for LLM: Ensuring Ethical AI Deployments,

www.turing.com/resources/implementing-security-guardrails-for-llms.
20. “LLMS Guardrails Guide: What, Why & How: Attri AI Blog: Attri.Ai

Blog.” LLMs Guardrails Guide: What, Why & How | Attri AI Blog |

Attri.Ai Blog,

attri.ai/blog/a-comprehensive-guide-everything-you-need-to-know-abo

ut-llms-guardrails.
21. Daryanani, Lavina. “How to Jailbreak Chatgpt.” Watcher Guru, 7 Feb.

2023, watcher.guru/news/how-to-jailbreak-chatgpt.
22. Greshake, Kai, et al. “Not What You’ve Signed up for Compromising

Real-World LLM-Integrated Applications with Indirect Prompt

Injection.” arXiv.Org, 5 May 2023,
doi.org/10.48550/arXiv.2302.12173.

https://doi.org/10.1145/3605764.3623985
23. Liu, Yi, et al. “Prompt Injection Attack against LLM-Integrated

Applications.” arXiv.Org, 2 Mar. 2024,

doi.org/10.48550/arXiv.2306.05499.
24. Zou, Andy, et al. “Universal and Transferable Adversarial Attacks on

Aligned Language Models.” arXiv.Org, 20 Dec. 2023,
doi.org/10.48550/arXiv.2307.15043.

25. “CHATGPT Plugin Exploit Explained: From Prompt Injection to

Accessing Private Data · Embrace the Red.” Embrace The Red, 28 May
2023,

embracethered.com/blog/posts/2023/chatgpt-cross-plugin-request-forg
ery-and-prompt-injection./.

26. Xu, Ziwei, et al. “Hallucination Is Inevitable: An Innate Limitation of

Large Language Models.” arXiv.Org, 22 Jan. 2024,
doi.org/10.48550/arXiv.2401.11817.

27. Garcia, Marisa. “What Air Canada Lost in ‘Remarkable’ Lying AI
Chatbot Case.” Forbes, Forbes Magazine, 19 Feb. 2024,

www.forbes.com/sites/marisagarcia/2024/02/19/what-air-canada-lost-i

n-remarkable-lying-ai-chatbot-case/.
28. Russell, Josh. “Judge Won’t Sanction Michael Cohen over

Ai-Generated Fake Legal Cases.” Courthouse News Service, 20 Mar.
2024,

www.courthousenews.com/judge-wont-sanction-michael-cohen-over-a

i-generated-fake-legal-cases/.
29. Mauran, Cecily. “Whoops, Samsung Workers Accidentally Leaked

Trade Secrets via Chatgpt.” Mashable, Mashable, 6 Apr. 2023,
mashable.com/article/samsung-chatgpt-leak-details.

30. Huynh, Daniel. “POISONGPT: How to Poison LLM Supply Chainon

Hugging Face.” Mithril Security Blog, Mithril Security Blog, 18 Dec.

2023,

blog.mithrilsecurity.io/poisongpt-how-we-hid-a-lobotomized-llm-on-h
ugging-face-to-spread-fake-news/.

31. Knapton, Ken. “Council Post: Navigating the Biases in LLM Generative

AI: A Guide to Responsible Implementation.” Forbes, Forbes
Magazine, 5 Oct. 2023,

www.forbes.com/sites/forbestechcouncil/2023/09/06/navigating-the-bi
ases-in-llm-generative-ai-a-guide-to-responsible-implementation/.

32. Weng, Lilian. “LLM Powered Autonomous Agents.” Lil’Log (Alt + H),

23 June 2023, lilianweng.github.io/posts/2023-06-23-agent/.
33. Thiel, David. “Investigation Finds AI Image Generation Models Trained

on Child Abuse.” FSI,
cyber.fsi.stanford.edu/news/investigation-finds-ai-image-generation-m

odels-trained-child-abuse.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/
http://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
http://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
http://www.nvidia.com/en-us/glossary/large-language-models/
http://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/?sh=44cc5add4af7
http://www.forbes.com/sites/craigsmith/2023/09/08/what-large-models-cost-you--there-is-no-free-ai-lunch/?sh=44cc5add4af7
https://doi.org/10.1145/3605764.3623985

International Journal of Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878 (Online), Volume-13 Issue-3, September 2024

27

Published By:
Blue Eyes Intelligence Engineering

and Sciences Publication (BEIESP)
© Copyright: All rights reserved.

Retrieval Number: 100.1/ijrte. C814213030924

DOI: 10.35940/ijrte.C8142.13030924

Journal Website: www.ijrte.org

34. Crist, Carolyn. “Chatgpt Gives Incorrect Answers about Eoe.”
Medscape, 16 Nov. 2023,

www.medscape.com/viewarticle/998537?form=fpf.

35. Hague, Danny. “Multimodality, Tool Use, and Autonomous Agents:
Large Language Models Explained, Part 3.” Center for Security and

Emerging Technology, 25 Mar. 2024,

cset.georgetown.edu/article/multimodality-tool-use-and-autonomous-a
gents/.

36. Ansari, M. Z., Ahmad, T., & Fatima, A. (2019). Feature Selection on

Noisy Twitter Short Text Messages for Language Identification. In
International Journal of Recent Technology and Engineering (IJRTE)

(Vol. 8, Issue 4, pp. 10505–10510).

https://doi.org/10.35940/ijrte.d4360.118419
37. Lalaei, R. A., & Mahmoudabadi, Dr. A. (2024). Promoting Project

Outcomes: A Development Approach to Generative AI and LLM-Based

Software Applications’ Deployment. In International Journal of Soft
Computing and Engineering (Vol. 14, Issue 3, pp. 6–13).

https://doi.org/10.35940/ijsce.d3636.14030724

38. Rao P, Mr. V., & Sivakumar, Dr. A. P. (2020). A Comprehensive
Retrospection of Literature Reported Works of Community Question

Answering Systems. In International Journal of Innovative Technology

and Exploring Engineering (Vol. 9, Issue 3, pp. 1904–1907).
https://doi.org/10.35940/ijitee.c8769.019320

AUTHOR PROFILE

Nikhil Pesati is a highly motivated student who is
looking to further his knowledge in large language

models and cybersecurity. He is a senior attending The
Harker High School, a prestigious college preparatory

school located in San Jose, California, where he has built

a strong academic background in computer science and
math through taking advanced courses like Compilers & Interpreters as well

as Multivariate Calculus. Nikhil has been conducting research in large
language models and cybersecurity for about three years. His prior research

in the field includes experience with assessing the capabilities of LLMs as

well as research on the discovery and classification of sensitive data. Aside
from his academic accomplishments, Nikhil possesses a keen interest in

soccer, both playing and watching. He also likes to play and develop
computer games and has thus become the media director of the Game

Development Club. Nikhil plans to pursue an undergraduate degree in

computer science and engineering to make a meaningful impact on citizens’

welfare.

Disclaimer/Publisher’s Note: The statements, opinions and

data contained in all publications are solely those of the

individual author(s) and contributor(s) and not of the Blue

Eyes Intelligence Engineering and Sciences Publication

(BEIESP)/ journal and/or the editor(s). The Blue Eyes

Intelligence Engineering and Sciences Publication (BEIESP)

and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods,

instructions or products referred to in the content.

https://www.doi.org/10.35940/ijrte.C8142.13030924
https://www.doi.org/10.35940/ijrte.C8142.13030924
http://www.ijrte.org/
https://doi.org/10.35940/ijrte.d4360.118419
https://doi.org/10.35940/ijsce.d3636.14030724
https://doi.org/10.35940/ijitee.c8769.019320

