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Abstract: Machining high-temperature alloys such as Nimonic 

PE16 demands precise control of machining parameters to 

achieve desired outcomes while minimizing tool wear and 

optimizing surface finish. In this study, we propose using machine 

learning regression models combined with synthetic data and 

response surface methodology strategies to optimize machining 

parameters for PE16. We aim to develop a predictive model that 

accurately estimates optimal cutting speeds and feed rates based 

on key output parameters, including cutting forces and surface 

roughness. Our methodology involves collecting experimental 

data from controlled machining tests conducted on PE16 samples 

under varying conditions. We used the datasets to train and 

validate regression models to establish correlations between input 

parameters and machining outcomes. The performance of each 

model is evaluated based on metrics such as mean absolute error 

and coefficient of determination. These metrics show 

relationships within the data and can determine a model’s success. 

The proposed machine learning framework offers a data-driven 

approach to optimize machining processes for PE16, facilitating 

enhanced efficiency, productivity, and quality in nuclear and 

other high-performance applications. Our findings contribute to 

understanding machining dynamics in challenging materials and 

provide valuable insights for intelligent machining systems. 

Keywords: Nimonic PE16, Machine Learning, Machinability, 

Regression, Response Surface Methodology, Synthetic Data 

I. INTRODUCTION 

The demand for high-performance materials is 

ever-increasing in modern manufacturing, especially in the 

aerospace, automotive, and energy sectors. Nimonic PE16, a 

nickel-based superalloy, is widely recognized for its 

exceptional mechanical properties. These properties include 

its high strength, corrosion resistance, creep resistance, and 

ability to maintain them at high temperatures [1]. These 

optimal material characteristics create significant challenges 

in the manufacturing process, specifically during machining. 

This material requires precise control over machining 

parameters to achieve desired outputs regarding surface 

finish, tool wear, and overall efficiency. Traditional methods 

for optimization of machine parameters involve a lengthy 

trial and error approach; this can be time-consuming and 
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costly to achieve effective results. With the emergence of 

Industry 4.0, there is a growing interest in utilizing machine 

learning algorithms to optimize machining parameters. 

Machine learning algorithms can analyze vast amounts of 

data, identify complex patterns, and make predictions that 

can significantly improve the efficiency and accuracy of 

machining operations. This paper explores the application of 

machine learning in optimizing machining parameters for 

Nimonic PE16. By developing and implementing ML 

models, we seek to predict the optimal cutting conditions that 

minimize tool wear, cutting forces, and surface roughness. 

This study will cover machine learning techniques, including 

single and multiple-variable regression analysis. We also 

explored the generation of synthetic data and the response 

surface methodology. Ultimately, the integration of machine 

learning in machining parameter optimization promises to 

streamline the manufacturing process and contribute to the 

broader goals of sustainable and intelligent manufacturing. 

Through this research, we aim to demonstrate the potential of 

machine learning to revolutionize the machining of 

difficult-to-machine materials like Nimonic PE16, leading to 

significant improvements in efficiency, cost-effectiveness, 

and product quality in the manufacturing industry. 

II. METHODOLOGY 

A. Experimental Setup 

We conducted a series of turning experiments to study the 

optimization of machining parameters for Nimonic PE16 

[15] [16]. We programmed a CNC lathe for this experimental 

setup (HAAS ST 10). Cutting inserts purchased from 

Kennametal of type (CNMG 433RP grade KCS10B) were 

used. The manufacturer’s specifications recommended these 

inserts for superalloys. A cylindrical bar of Nimonic PE16, 

23mm in diameter, was used as the workpiece.  

B. Selection of Machining Parameters 

The key machining parameters for this study were cutting 

speed (Vc), feed rate (f), and depth of cut (d). A range of 

values was chosen for the feed rate and cutting speed while 

keeping the depth of cut consistent. We determined these 

ranges from the literature on similar Nimonic materials and 

estimated cutting parameters from the tool manufacturer 

[2],[3],[4][5][12][13].  

The final chosen range of machining parameters is visible in 

Table I. The selected range was significant as it covers a 

broad spectrum of potential operating conditions, allowing 

for a comprehensive understanding of the material's 

machinability under various scenarios. 
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Table I: Experimental Turning Parameters 

Depth of Cut 1 mm   

Feed Rate 0.2 mm/rev 0.3 mm/rev  

Cutting Speed 75 m/min 100 m/min 150 m/min 

C. Data Collection 

The critical outputs considered for determining the 

efficiency of machining parameters were cutting forces, 

surface roughness, and tool wear. We meticulously designed 

the data collection process to ensure the reliability of our 

research. Firstly, cutting forces were measured using a 

Dynamometer attached to the cutting tool and mounted on the 

CNC lathe turret. The type of Dynamometer used was Kistler 

Multicomponent Dynamometer 9257B. This measuring 

device, combined with a Kistler Type 5070 amplifier, 

converts the voltage signals into force outputs.  

The Dynamometer measures forces in the x, y, and z 

directions. In the case of this experimental setup, the Fz 

component makes up the main cutting force during the 

turning process. Using Kistler's software Dynoware, the 

average Fz value from each cut can be determined and used 

for further analysis. Secondly, the surface roughness output 

was measured using a Mitutoyo SJ-210 surface roughness 

tester. Three surface roughness measurements were taken on 

the workpiece in different areas and averaged to obtain the 

surface roughness value. This device used the ISO 4287:1997 

standard to measure the surface after each experiment [6]. 

This standard was revised and combined to create a new 

standard, ISO 21920-2:02021 [7][14].  

The measuring parameters for the surface roughness tester 

following ISO 4287:1997 were a Measuring Speed of 0.02 

in/s and Cutoff Length (λc) = 0.03 inch. The surface 

roughness tester measured the arithmetic mean surface 

roughness value (Ra) in microinches. Lastly, the tool wear 

for each insert was measured. The tool wear responsible for 

the failure of turning inserts is most commonly flank wear 

and crater wear. In this experiment, we considered flank wear 

as the significant parameter for tool wear. Flank wear was 

measured using a VHX digital microscope and virtual 

measurement tools. The standard used for measuring the 

flank wear of a cutting insert is ISO 3685 and was adhered to 

during the data collection stage [8]. This systematic and 

meticulous methodology collected comprehensive data on 

cutting forces, surface roughness, and tool wear. This data 

enables the development of machine-learning models to 

optimize the machining parameters for Nimonic PE16. 

D. Data Analysis 

These measured output parameters can be analyzed through 

machine learning and statistical techniques to optimize the 

combination of parameters. We conducted the data analysis 

for this paper using Anaconda's Jupyter Notebooks. The 

standard machine learning libraries within the software, such 

as Scikit-learn, were also utilized. A challenge with machine 

learning techniques and difficult-to-machine materials can be 

the cost associated with data collection. High-strength 

materials and the extensive data needed for machine-learning 

techniques can cause financial challenges. One technique 

employed to solve this problem is the generation of synthetic 

data. Synthetic data helps to supplement costly trials. We 

generated synthetic data for this experiment to double the 

original experimental data set from sixteen data points to 

thirty-two. There are several regression models to choose 

from, including Linear regression, multiple regression, 

polynomial regression, support vector regression, and 

decision tree regression [9],[10]. The models chosen to 

determine patterns between machining parameters are linear 

regression, multiple regression, and response surface models. 

Multiple regression models are ideal for modeling the 

relationship between input variables and one or more output 

variables [11]. Linear regression helps show the relationship 

between each variable individually. Another form of 

optimization is using Response Surface Methodology 

(RSM). The primary goal of RSM is to optimize the output 

response influenced by various input variables. This 

methodology aims to find the optimal combination for the 

different machining outputs. We see the combination by 

fitting a second-order polynomial. 

 

Y is the response variable, Xi and Xj are input variables, 

Bo, Bi, Bii, and Bij are coefficients, and ϵ is the error term. 

With this fitted model, we can then perform the optimization 

process. We performed the optimization using the Sequential 

Least Squares Programming method (SLSQP). 

III. RESULTS 

A. Linear Regression 

Firstly, each input and output parameter had a linear 

regression model of their relationship generated. Without 

synthetic data, the mean absolute errors and r-squared values 

were either impossible or inaccurate. After adding synthetic 

data to the dataset, we created linear regression models. We 

calculated metrics for each set of variables and displayed 

them in Table II. The R-squared values show impossibility 

and extremely low correlation. Ultimately, these metrics 

show a low reliability for relationship determination.  

Table II: Linear Regression Metrics 

Parameters R-Squared Mean Absolute Error 

Cutting Speed & 

Surface Roughness 

-1.32 1199.35 

Cutting Speed & 
Cutting Force 

-0.16 1607.94 

Cutting Speed & Flank 

Wear 

-0.14 0.01 

Feed Rate & Surface 
Roughness 

-0.21 812.79 

Feed Rate & Cutting 
Force 

-0.00 1262.75 

Feed Rate & Flank 

Wear 

0.08 0.01 
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Figure 1: Linear Regression of Cutting Force and 

Cutting Speed 

The trendline in Figure 1 has a slight negative slope, 

suggesting a weak inverse relationship between cutting speed 

and cutting force. As cutting speed increases, the cutting 

force appears to decrease slightly. However, the scatter of the 

data points around the trendline indicates high variability in 

the cutting force that cutting speed alone does not explain. 

The trendline needs to capture the variability in the data well, 

suggesting that cutting speed alone is not a strong predictor of 

cutting force. These results show that simple linear regression 

is not an accurate predictor for machining parameters, and a 

multi-variable analysis tool might be more suitable.  

B. Multiple Regression 

Each graph compares the actual and predicted values for the 

respective output variables. The red line represents the ideal 

line where the predicted values match the exact values. 

 

Figure 2: Multiple Regression Results 

For Flank Wear depicted on the leftmost graph, the points 

are close to the ideal line but show a fair amount of scatter. 

This pattern indicates that while the model has some 

predictive power, there was considerable error in the 

predictions. For Surface Roughness depicted in the center 

graph, the points are scattered widely around the ideal line, 

indicating a poor fit. The model could be more accurate in 

predicting cutting force. Like Surface Roughness, the points 

for Cutting Force depicted in the rightmost graph show a 

wide scatter around the ideal line, indicating an inaccurate 

prediction. 

Table III: Multiple Regression Metrics 

Output Variable R-Squared Mean Absolute Error 

Flank Wear -0.18 0.01 

Surface Roughness 0.23 340.57 

Cutting Force -0.50 2162.82 

The metrics for the multiple regression plots coincide with 

the visual analysis of the plots. The low correlation of the 

R-squared values shows an inaccurate prediction model. Also 

measured are high and impossible mean absolute error 

values, which show a need for more data or new analysis 

methods.  

C. Response Surface Methodology 

Using the response surface methodology (RSM) with the 

combination of synthetic data production, a good prediction 

of optimal machining parameters can be determined for each 

output variable (surface roughness, cutting force, and flank 

wear. Figure 3 is the response surface of surface roughness. 

This graph shows the three-dimensional layout of surface 

roughness values based on the combinations of input 

variables, feed rate, and cutting speed.  

 

Figure 3: Response Surface of Surface Roughness 

Minimizing the output variables through RSM could help 

find the optimal input parameters. Table IV shows the overall 

outputs for each SLSQP optimization run. These results show 

an output parameter's optimal feed rate and cutting speed 

combination. 

Table IV: RSM Optimal Parameters 

Output Parameter Cutting Speed Feed Rate 

Surface Roughness 128.4 m/min 0.2250 mm/rev 

Cutting Force 63.94 m/min 0.1695 mm/rev 

Flank Wear 95.29 m/min 0.2400 mm/rev 

D. Model Validation 

The results achieved from the RSM are within a close range 

of the data set created and should optimize one of the output 

parameters. These parameters were tested in the original 

experimental setup to validate the model’s results. The 

validation turning results are shown in Table V below. 

 Table V: RSM Validation Results 

Parameters Surface 

Roughness 

(Micro-Inch) 

Cutting Force 

(Newtons) 

Flank Wear 

(Micrometers) 

Optimal Cutting 
Force 

91.950 150 137 

Optimal Surface 

Roughness 

33.400 80 87 

Optimal Flank 
Wear 

66.275 225 47 

These results can be compared with the average values 

from the first experimental trials to determine the 

optimization methods' measure of success.  The flank wear, 

cutting force, and surface roughness were 260 micrometers, 

77.6 micro-inches, and 112N, respectively.  
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The RSM was able to find optimal parameters for the 

surface roughness and flank wear while struggling to 

optimize the cutting force effectively. The RSM method 

achieved an 81.9% reduction in flank wear, a 57% decrease 

in surface roughness, and a 33.9% increase in cutting force. 

IV. CONCLUSION AND FUTURE SCOPE 

Ultimately, linear and multiple regression analysis to 

optimize machining parameters needs further research. With 

the implementation of synthetic data, the regression model 

metrics and means for prediction improved, meaning that 

with enough data, they could be viable. For this experiment, 

RSM combined with synthetic data generation was the most 

successful in optimizing machining parameters. However, 

RSM was still limited in its ability to optimize cutting force. 

With the implementation of more trials and reiteration of the 

RSM process, the model could predict cutting force. For the 

future scope of this research, the results from the validation of 

the models should be re-trained into the data set. This 

continuous validation can further optimize the RSM output 

parameters and improve accuracy.  
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APPENDIX 

 

Figure 4: Linear Regression of Flank Wear and Cutting Speed 

 

Figure 5: Linear Regression of Surface Roughness and 

Cutting Speed 

 

Figure 6: Linear Regression of Flank Wear and Feed 

Rate 

 

Figure 7: Linear Regression of Flank Wear and Feed 

Rate 

 

Figure 8: Linear Regression of Cutting Force and Feed 

Rate 

https://www.doi.org/10.35940/ijrte.C8124.13030924
https://www.doi.org/10.35940/ijrte.C8124.13030924
http://www.ijrte.org/


International Journal of Recent Technology and Engineering (IJRTE) 

ISSN: 2277-3878 (Online), Volume-13, Issue-3, September 2024 

5 

 

Published By: 
Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijrte.C812413030924 

DOI: 10.35940/ijrte.C8124.13030924 

Journal Website: www.ijrte.org 
 

 
 

 

 

 

Figure 9: Response Surface of Flank Wear 

 

Figure 10: Response Surface of Cutting Force 
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