Feature Scaled Element Balancing with Random Boosting for Heart Disease Prediction using Machine Learning
M. Shyamala Devi1, Shermin Shamsudheen2, Rincy Merlin Mathew3
1M. Shyamala Devi, Associate Professor, Computer Science and Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India.
2Shermin Shamsudheen, Lecturer, Department of Computer Science, College of Computer Science & Information Systems, Jazan University, Saudi Arabia.
3Rincy Merlin Mathew, Lecturer, Department of Computer Science, College of Science and Arts, Khamis Mushayt, King Khalid university, Abha, Asir, Saudi Arabia.
Manuscript received on January 05, 2020. | Revised Manuscript received on January 25, 2020. | Manuscript published on January 30, 2020. | PP: 4105-4110 | Volume-8 Issue-5, January 2020. | Retrieval Number: E5069018520/2020©BEIESP | DOI: 10.35940/ijrte.E5069.018520
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: In the current scenario, the researchers are focusing towards health care project for the prediction of the disease and its type. In addition to the prediction, there exists a need to find the influencing parameter that directly related to the disease prediction. The analysis of the parameters needed to the prediction of the disease still remains a challenging issue. With this view, we focus on predicting the heart disease by applying the dataset with boosting the parameters of the dataset. The heart disease data set extracted from UCI Machine Learning Repository is used for implementation. The anaconda Navigator IDE along with Spyder is used for implementing the Python code. Our contribution is folded is folded in three ways. First, the data preprocessing is done and the attribute relationship is identified by the correlation values. Second, the data set is fitted to random boost regressor and the important features are identified. Third, the dataset is feature scaled reduced and then fitted to random forest classifier, decision tree classifier, Naïve bayes classifier, logistic regression classifier, kernel support vector machine and KNN classifier. Fourth, the dataset is reduced with principal component analysis with five components and then fitted to the above mentioned classifiers. Fifth, the performance of the classifiers is analyzed with the metrics like accuracy, recall, fscore and precision. Experimental results shows that, the Naïve bayes classifier is more effective with the precision, Recall and Fscore of 0.89 without random boost, 0.88 with random boosting and 0.90 with principal component analysis. Experimental results show, the Naïve bayes classifier is more effective with the accuracy of 89% without random boost, 90% with random boosting and 91% with principal component analysis.
Keywords: Machine Learning, Accuracy, Performance Metrics, Regressor and Feature scaling.
Scope of the Article: Machine Learning.