Loading

Performance of Crumb Rubber Incorporated Ferro Geopolymer Panels under Flexure
Mohana R1, Muthu Kumar A2

1Dr. R. Mohana, Assistant Professor (SG), Department of Civil Engineering, Mepco Schlenk Engineering College, Sivakasi (Tamil Nadu), India.
2Muthu Kumar A, M.E, Department of Structural Engineering, Mepco Schlenk Engineering College, Sivakasi (Tamil Nadu), India.
Manuscript received on 27 November 2019 | Revised Manuscript received on 16 December 2019 | Manuscript Published on 31 December 2019 | PP: 127-133 | Volume-8 Issue-4S2 December 2019 | Retrieval Number: D10301284S219/2019©BEIESP | DOI: 10.35940/ijrte.D1030.1284S219
Open Access | Editorial and Publishing Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: This research work presents the overview of geopolymer mortar application into the ferro cement panel with the incorporation of crumb rubber and Nano fly ash. The geopolymer mortar is prepared by using industrial wastes as a base material such as fly ash and ground granulated blast furnace slag (GGBFS) which generally helps to reduce the level of CO2 emission. Also, the recycled tyre crumb rubber is utilized as a sustainable innovative construction material which is used a partial substitution for sand upto 5% for enhancing the ductility without any strength degradation. These reduces land fill problems and ground water quality degradation problems. Crumb rubber has the ideal capacity to absorb energy from static and other kind of loads. The geopolymer binder preparation is done by utilizing material such as fly ash, GGBFS, alkaline liquid made of NaOH and Na2SiO3 , Nano fly ash. The Nano fly ash is used as an additive which helps in increasing the strength and durability of the element by its pore filling capability. This project aims to enhance the strength of fly ash based geopolymer mortar with the help of GGBFS incorporation. The molarity of alkaline activator, solution to binder ratio and silicate to hydroxide ratio is fixed as 12, 0.4 and 1.5 throughout the process. The mortar cubes and panels were heat cured under hot air oven at 80ᵒ C for 48 hours. The mechanical behavior of geopolymer mortar is assessed by compressive strength test water absorption test. The panel is made of high strength geopolymer mortar and expanded metal mesh with chicken mesh for obtaining higher energy absorption capacity with good deforming ability and less crack pronouncement. The investigation involves finding the initial crack load, ultimate failure load and residual flexural strength ratio. The results show that the tyre inclusion enhances the flexural strength of the ferro geopolymer panel by means of its ductile enhancing capacity.
Keywords: Geopolymer Mortar, Fly Ash, GGBFS, Crumb Rubber, Nano Fly Ash And Flexure.
Scope of the Article: High Performance Concrete