Effect of Soft Material Hardness and Hard Material Surface Morphology on Friction and Transfer Layer Formation; Dry Condition
M Basavaraju1, S Ranganatha2
1Mr. M Basavaraju, Department of Mechanical Engineering, Government polytechnic, Channasandra, Bangalore (Karnataka), India.
2Dr. S. Ranganatha, Professor, Department of Mechanical Engineering, University Visveswaraya College of Engineering, Bangalore (Karnataka), India.
Manuscript received on 21 September 2013 | Revised Manuscript received on 28 September 2013 | Manuscript published on 30 September 2013 | PP: 40-46 | Volume-2 Issue-4, September 2013 | Retrieval Number: D0776092413/2013©BEIESP
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: The morphological features of the surface in both micro and macro levels are important factors governing the tribological behavior of the contacting surfaces. Surface hardness is also an important factor which governs the friction and wear behaviors of the contacting surfaces. Surface morphology of a tool is an important factor as it primarily controls the tribological behavior at the interface which in turn controls the surface finish of products. In the present investigation a pin-on-plate sliding tester was used to identify the effect of surface morphology and hardness on co-efficient of friction and transfer layer which characterizes the tribological behavior. The morphology of mild steel (EN8) plate surfaces were modified by employing three different surface modification methods like grinding (silicon carbide wheel polishing), shot blasting and electric discharge machining methods. Surface roughness parameters which characterize the morphology of the steel plates were measured using a three dimensional optical profilometer. Role of hardness is studied by employing lead, copper and Aluminum (Al6082) pins which were slid against steel plates. Experiments were conducted for plate inclination angles of 1, 1.5,2 and 2.5 degrees. Normal load was varied from 1 to 150N during the tests. Experiments were conducted under dry condition in ambient environment. Scanning electron microscope was used to study the formation of transfer layer on plate and pin surfaces. It was observed that the co-efficient of friction and transfer layer formation were found to depend on the surface morphology of the harder surface. The quantum of transfer layer formation on the surfaces is found to increase with increase in surface roughness.
Keywords: Friction, Co-efficient of Friction, Surface Morphology and Transfer Layer Formation.
Scope of the Article: Materials Engineering