Loading

Mathematical Modeling of Suspended Microbial Fuel Cells and Electron Transfer Mediator using Homotopy Perturbation Method
P. Jeyabarathi1, M. Kannan2, L.Rajendran3
1P. Jeyabarathi, Department of Mathematics, Government Arts College, Ariyalur, Affiliated to Bharathidasan University, Thiruchirappalli, India.
2M. Kannan, Department of Mathematics, Government Arts College, Ariyalur, Affiliated to Bharathidasan University, Thiruchirappalli, India.
3L. Rajendran, Department of Mathematics, AMET, Deemed to be University, Chennai, India. 

Manuscript received on November 20, 2019. | Revised Manuscript received on November 26, 2019. | Manuscript published on 30 November, 2019. | PP: 3028-3032 | Volume-8 Issue-4, November 2019. | Retrieval Number: D7695118419/2019©BEIESP | DOI: 10.35940/ijrte.D7695.118419

Open Access | Ethics and Policies | Cite  | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: The theoretical model of microbial fuel cells with suspended cells and an additional electron transfer mediator is analyzed. Many biological, chemical and electrochemical reactions occur in the bulk liquid and on the surface of the electrode with the substrate (glucose), oxidized mediators and reduced mediators. The homotopy perturbation method (HPM) is used to solve the nonlinear diffusion equations in microbial fuel cells. Direct and approximate polynomial expression of a substrate (glucose), oxidized mediator and reduced mediator concentration are obtained at the mass transfer balance layer. The results of the experiment are compared with the results of the analytical and simulation and satisfactory agreement is noted.
Keywords: Mathematical Modeling, Numerical Simulation, Microbial Fuel Cell, Non-Linear Diffusion Equation, Homotopy Perturbation Method.
Scope of the Article: Digital Clone or Simulation.