Retinex Color Balanced Piecewise Contrast and Fuzzy Trilateral Filter for Underwater Image Enhancement
A.Parameswari1, M.V.Srinath2
1A.Parameswari, Ph.D. Research Scholar, Department of Computer Science, Bharathiar University, Coimbatore, India.
2Dr. M.V.Srinath, Director, Department of MCA, STET Women’s College, Sundarakkottai, Mannargudi, Tamil Nadu, India. E-mail:
Manuscript received on November 11, 2019. | Revised Manuscript received on November 20 2019. | Manuscript published on 30 November, 2019. | PP: 10815-10822 | Volume-8 Issue-4, November 2019. | Retrieval Number: D4363118419/2019©BEIESP | DOI: 10.35940/ijrte.D4363.118419
Open Access | Ethics and Policies | Cite | Mendeley | Indexing and Abstracting
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Abstract: Over the past few years, underwater observation has become an active research area. Due to the higher rate of image degradation in the underwater environment, image enhancement has become one of the problems to be addressed for the underwater research. Underwater images face limitations like color correction, white balance, color contrast and haze. To overcome those problems, a novel fusion method based on the Retinex Color-balanced Piecewise-contrast and Fuzzy Reinforced Trilateral Filter (RCP-FRTF) method is presented for underwater image improvement. With the underwater image given as input, to start with, a color correction model based on the Retinex multi proportions is presented. With the color corrected output obtained, an Eigen-based White Balancing method is applied to generate color balanced model. With the color balanced underwater image, color contrasting is performed using the Piecewise Linear Color Contrast model. After obtaining the latter, the contrast is said to be improved to a better level. Finally, to generate a haze-free image a Fuzzy Reinforced Trilateral filter is applied. The enhanced and de-hazed images are distinguished by reduced noise level, thus enhanced visibility and contrast while the finest edges are enhanced. The proposed RCP-FRTF method provides better performance in terms of PSNR, computational time, complexity and accuracy as compared to conventional methods.
Keywords: Color-balanced, Piecewise-contrast, Retinex, Reinforced Trilateral Filter
Scope of the Article: Microwave Filter.