Loading

Experimental Inspection on Shear Capacity in RCC Beams with Partial Replacement of Recycled Coarse Aggregates
Surapu Ramlal1, Ponnana Ram Prasad2, Dora Prudhvi Raju3

1Surapu Ramlal, Associate Professor, AITAM, Andhra Pradesh, India.
2Ponnana RamPrasad, Assistant Professor AITAM, Andhra Pradesh, India.
3Dora Prudhvi Raju, M. Tech AITAM, Andhra Pradesh, India.

Manuscript received on July 15, 2020. | Revised Manuscript received on July 20, 2020. | Manuscript published on July 30, 2020. | PP: 321-326| Volume-9 Issue-2, July 2020. | Retrieval Number: B3831079220/2020©BEIESP | DOI: 10.35940/ijrte.B3831.079220
Open Access | Ethics and Policies | Cite | Mendeley
© The Authors. Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: Demolition waste increasing day by day. The old damaged building materials can be used in present buildings or other construction works. Especially the recycled aggregates are useful to the concrete structures. The experimental studies on the use of recycled coarse aggregate has been going on for many countries. This publication focuses on the relationship between the shear capacity and the flexural cracking load of reinforced recycled concrete beams with stirrups, this experimental Inspection with partial replacement of natural coarse aggregates (NAC) with recycled coarse aggregates (RAC) at different ages as 10, 20 and 30 years in various proportions as 20 per cent, 30 per cent, 40 per cent. For this, M30 grade of concrete is consider. Curing of specimens were done for 7 day and 28 days to conclude the maximum strengths. The obtained results of concrete with partial replacement of recycled aggregates of 10,20and 30 years age group conclude maximum compressive strength of 35.84 N/mm2 at 40% replacement of NCA with RCA of age group (10 years) and 34.12 N/mm2 at 30% replacement of NCA whit RCA of (20 years) age group and 36.14 N/mm2 20% replacement of NCA with RCA of age group (30 years). After the compressive strength, beam specimens were casted for 7day and 28 days. Based on test results of 8 beams, the relationship between the cracking load that causes a beam to crack in the middle of the shear span and the beam’s shear capacity is confident. All beams are reinforced in the longitudinal direction only and only tested under two-point loading conditions. The average analytical cracking load ratio is 0.60.the mid-shear span at cracking load (Vcr-a/2) in comparison with the observed shear capacity (Vexp). The analytical cracking load ratio. The analytical cracking’s load was used in this exploration as it is more reliable than the observed cracking load. At mid-span, the shear capacity of most of the beams was shown to be 50%. The average shear capacity ratio to the related test crack load in the center of the shear span 0.43. The analysis showed that cracking loads are strongly related to the shear capacity of the members. This relationship can be used to develop recycled reinforced beam members ‘ shear design process. 
Keywords: Shear cracking load, shear capacity, recycled coarse aggregate, compressive strength.